Introducing the Binary Analysis Tool

Armijn Hemel, MSc
Tjaldur Software Governance Solutions

May 27, 2013

About Armijn

v

using Open Source software since 1994

MSc Computer Science from Utrecht University (The
Netherlands)

> core team gpl-violations.org from 2005 - May 2012

v

v

owner Tjaldur Software Governance Solutions

gpl-violations.org

Binary Analysis Tool

Binary Analysis Tool (or: BAT) is a lightweight tool under an open
source license that automates binary analysis.

» demystify compliance engineering by codifying knowledge
» make it easier to have reproducable results
» common language for binary analysis

> only analyses binaries, but draws no legal conclusions
Although BAT is a generic framework for binary analysis my focus
is on software license compliance.

Important: a license violation is not a technical issue, but a legal
issue. Technical measures are only used to obtain evidence.

Why analyse binaries?

» software is often supplied in binary form by vendors (on a
device/CD/DVD/flash chip/download/app). Sometimes
source code is supplied and if you're lucky it matches the
binary.

> binaries are shipped to customers

Shipping software as source code is the exception.

If you pass on the binary software (for example in a product) you
have to know what you ship! This means you have to analyse the
binaries.

Place of BAT in an open source compliance process

BAT is not meant as a replacement of a source code scanner: if
you have all source code there is more than enough information to
work with and you don't necessarily need BAT.

BAT is useful when:

> you get binaries, but no source code and want to know what
could be in there

» you get binaries and source code, but don't know if binaries
and sources match

What's in this blob?

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
00000020
000000b0
000000c0O
00000040
000000e0
000000£0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180

AAAAN D AA

50
03
2e
65
od
92
78
33
3a
85
ab
8b
3f
f1
64
a6
91
£2
17
6
7
35
61
86
32

.

4b
a7
31
78
do
18
2f
ce
ea
2d
37
di
67
fe
df
cd
a7
de
d2
Te
36
30
9a
fc
Oa

S

03
26
2e
65
38
of
83
do
33
01
£7
33
el
ec
b8
6
d1
6a
fe
1f
Tc
43
f4
9c
b7

~

04
9e
31
ec
65
el
da
89
ac
Ob
9c
Oc
9d
fb
61
eb
fc
£8
81
be
ef
1b
14
91
8c

gy

14
16
2e
3a
69
e3
76
ee
e3
77
£7
63
72
22
£3
ab
cl
ae
bd
37
dd
fd
76
2f
5b

.

00
01
31
6d
30
dé
c3
8a
02
df
bc
80
fd
9b
e6
83
99
Te
9b
ee
b4
e
al
b3
a3

~

00
f4
37
78
60
c8
a6
£8
Oe
£7
e7
57
5b
le
87
f6
4b
e9
e0
Ta
31
31
1b
c7
c8

AL

00
ae
5f
53
50
4d
do
38
3c
dc
fd
55
53
b5
25
87
fé6
cd
fb
73
82
b9
Te
a0
3d

e

08
19
53
55
94

6d
ae
b3
4

19
98
6f
b
le
a7

eb
ef
74
39
2c
8d
2c

AN

00
01
4d
9a
96
f4
Ta
3a
38
03
e7
e6
a7
d9

6e
Se
£3
5d
2d
46
76
a8
cl
b3

e

29
15
43
£7
56
03
37
88
ea
1c
bc
00
8b
fa
2d
6e
dd
e0
fb
f0
64
32
38
a3
o7

o~

52
00
5f
26
43
69
of
1f
ee
67
5f
a3
de
f0
6
59
3b
9b
6
fd
ed
6b
ab
a3
1b

P

57
00
61
69
91
6b
38
30
e9
66
a7
3d
9f
03
ad
50
2
fa
56
af
74
64
69
bf
c7

~

3c
00
6¢
9a
98
b8
8b
61
a4
9f
ac
be
7d
5b
£2
5¢c
Se
c9
52
of
Oc
98
6f
96
59

e

fa
76
6¢c
42
06
a3
33
c2
ce
fd
5c
e6
80
37
66
3c
da
3b
dc
be
b3
2a
d1
Tc
e6

A

cO
31
2e
ca
03
88
ae
52
d4
db
bb
cf
5d
3c
fb
c9
5
7o
d7
be
82
96
fa
df
85

gy

|exe.:mxSU..&i.B. |
|..8ei0‘P..VC....|
[M...ik...|

|we|...1.tFd.}...|
|50C...1.9v2kd.*. |
la...v..”,.8.i0..]|
I A | .1
12...0 .=, ...Y..|

1

1 oy py

Binary analysis

A binary usually looks like a blob with random data. Often there is
a structure, with embedded file systems or compressed files that
can “easily” be recognized.

Analysis steps

Steps to determine if a binary contains a particular source code:

1. extract binary files from blobs (firmwares, installers, etc.)
recursively (if needed)

2. extract identifiers (strings, function names, variable names,
etcetera) from binary files and compare these to (publicly
available) source code

3. use other information like file names, presence of other files,
package databases, etcetera, for circumstantial evidence

“Ducktyping”

“If it looks like a duck and quacks like a duck, it is probably a
duck”

If you can relate many strings, function names, variable names,
and so on from a binary file to source code it becomes statistically
hard to deny (re)use of a certain software.

Often it is possible to match hundreds or even thousands of
strings, function/method names or variable names.

Drawbacks of manual inspection

Checking can be done by hand using standard Linux tools, but
there are drawbacks:

» limited by the knowledge of the engineer
> time consuming (so expensive)

> easy to overlook things

So you really want to automate this! BAT can do this for you.

Inner workings of BAT

1. discovery of offsets of known file systems and compressed files
and unpacking of found file systems and compressed files
(recursively)

2. check each unpacked file, like identifier search

3. reporting, generating pictures, etcetera

BAT modules

BAT is extremely modular and it comes with several modules:

v

unpacking over 30 file systems and compressed files
report on common properties (file type, size, etcetera)
search for license markers and identifiers

advanced string identifier search

dynamic ELF linking verification

kernel module analysis

many more

Advanced identifier search /ranking

Most advanced check in BAT extracts string constants,
function/method names, variable names, etcetera, from binaries
and compares them with a large database of strings and function
names extracted from source code:

Currently over 170,000 packages from GNU, GNOME, KDE,
Samba, Debian, Savannah, FedoraHosted, Linux kernel, Maven,

Database is not part of BAT, but only available as a subscription,
or you can ‘“roll your own".

Algorithm has been published at the Mining Software Repositories
2011 conference and scripts to create the database are open.

Demo with BAT

Running a test would take too long for this presentation, so | will
only browse pregenerated results.

Inner workings of BAT ranking

BAT ranking algorithm uses a database where data is extracted
from source code:

» string constants (using xgettext)
» function names (C) and method names (Java) (using ctags)

» variable names and Linux kernel symbols (C), field names and
class names (Java) (using ctags)

» licenses (if enabled) (using Ninka and FOSSology)

» various characteristics of the file (SHA256 checksum, etc.)

Core of algorithm uses string constants, rest of information is used
to verify /strengthen the findings.

String extraction from binaries

From each binary that has not yet been discarded (graphics, video,
audio, resources files and text files are not interesting) string
constants are extracted.

String constants are used because they are not discarded by the
compiler.

Some preprocessing steps can be used to increase quality of the
strings extracted (to avoid false positives and get better scan
results).

Scoring (1)

Each binary file is sorted into a family of languages:

» C (C/C++/QML/etc. + unknown binaries)
» Java (JDK/Dalvik/Scala/etc.)
> C#

» ActionScript

Reason is that strings that are very insignficant in one family could
be very significant in another and vice versa.

Drawback: language embedding (specifically .NET) is at odds with
this. For most systems (Java, embedded Linux) this is much less

of an issue.

Scoring (2)

Each string constant is compared to the database. If a string can
be matched a score is assigned to that string.

The score for a unique string (single package) is the length of the
string.

If it is not unique the score very rapidly drops depending on in how
many different packages it can be found.

If there is cloning the string is assigned to a package using an
algorithm that picks the most promising package.

Database challenges

There are challenges in creating a database:

» package names and file names are very important in BAT.
DVCS like Git make software development more fluid.

» cloning of software between packages.

These challenges are not exclusive to BAT.

Cloning

Sometimes the wrong package will be detected, but this reflects
how open source works!

» software reuse: code is “cloned” between packages. Software
reuse is actually good! Some packages are forked and
incoporated into others (in Java more so than in C code).

» packages are renamed for various reasons. For example in

Debian: httpd is renamed to apache2, Firefox is lceweasel,
and so on.

BAT tries to take alternatives and “cloning” into account.

Database quality

Results of scanning are dependent on quality of the database:

only BusyBox is included everything will look like BusyBox.
Making a good database is not easy:

» What to include?
» What to exclude?

» When is a package a new package?

Other functionality in BAT

v

finding duplicate files in firmwares

v

finding leftover kernel modules (mismatching kernel version
numbers)

v

ELF dynamic linking dependency inspection

v

and more

ELF dynamic linking

Actual license of a binary is only determined at run time. This is a
largely unresearched area.

BAT can give more information about how ELF binary files
interact.

ELF dynamic linking dependency graph

/bin/busybox

lib/liberypt.s0.0

-..'::2‘.::;:'.'-'-"-

Upcoming functionality in BAT

> better GUI
» deployment as a webservice

» more file systems: vendors often use non-standard versions of
file systems. Right now BAT supports 14 different flavours of
squashfs and | know there are more.

Questions?

Contact

» armijn@tjaldur.nl
» http://www.tjaldur.nl/
» Binary Analysis Tool: http://www.binaryanalysis.org/

armijn@tjaldur.nl
http://www.tjaldur.nl/
http://www.binaryanalysis.org/

