Bringing up Android on
your favorite X86
Workstation or VM

Ron Munitz
CTO
Nubo Software

rond@nubosoftware.com

ron@android-x86.o0rg

Android Builders
Summit 2013

What is a "ROM"?
Examples of Android ROMs

ROMSs in the Android developer world

Building your first ROM out of the AOSP
Android and X86

Introduction to ROM Android Builders
Cooking Summit 2013

"ROM" - Definition

From Wiktionary, the free Dictionary:
“ROM’”.

® (electronics, computing) read-only memory

® (video games) A software image of read-only memory (as of a
game cartridge) used in emulation

"ROM?” - Definition (cont.)

From Wikipedia, the free Encyclopedia:
ROM, Rom, or rom is an abbreviation and name that may refer to:
In computers and mathematics (that's us!):

e Read-only memory, a type of storage media that is used in computers
and other electronic devices
e ROM image, a computer file which contains a copy of the data from a

read-only memory chip

Terminology check

As CyanogenMod educates us in their overview
of Modding:

“You can flash a ROM onto the ROM,
which isn't really ROM”

http://wiki.cyanogenmod.com/wiki/Overview_of Modding

Android ROM components

Traditional terminology — whatever lies on the read-only partitions of the
device's internal flash memory:

e Recovery Mode:
o Recovery Image (kernel + initrd)
e Operational Mode:
o Boot Image (kernel + initrd)
o System Image
e The magical link between the two:
o Misc

What is not a part of the ROM?
e User data: /data, /cache, /mnt/sdcard/...

Android ROM Storage Layout

Since Android is Linux at its core, we can examine its

storage layout via common Linux tools:
shell@android:/ $ df

Filesystem Size Used Free Blksize
/dev 487TM 32K 487TM 4096
/mnt/secure 487M 0)¢ 487M 4096
/mnt/asec 487M 0)¢ 487M 4096
/mnt/obb 487M OK 487M 4096
/system 639M 174M 4096
/cache 436M ™ 428M 4096
/data 5G 2G 3G 4096
/mnt/shell/emulated 5G 2G 3G 4096

Android ROM Storage layout:

"Standard Linux"

shell@android:/ $ mount

rootfs / rootfs ro,relatime 0 O

tmpfs /dev tmpfs rw,nosuid, relatime,mode=755 0 O
devpts /dev/pts devpts rw,relatime,mode=600 0 O
proc /proc proc rw,relatime 0 O

sysfs /sys sysfs rw,relatime 0 O

debugfs /sys/kernel/debug debugfs rw,relatime 0 0

Android ROM Storage layout:
"Standard Android"

none /acct cgroup rw,relatime,cpuacct 0 0

tmpfs /mnt/secure tmpfs rw,relatime,mode=700 0 O

tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 O
tmpfs /mnt/obb tmpfs rw,relatime,mode=755,gid=1000 0 O

none /dev/cpuctl cgroup rw,relatime,cpu 0 O

/dev/block/platform/sdhci-tegra.3/by-name/CAC /cache ext4 rw,nosuid, nodev,
noatime,errors=panic,user xattr,acl,barrier=1,nomblk io submit,
data=ordered,discard 0 O

/dev/block/platform/sdhci-tegra.3/by-name/UDA /data ext4 rw,nosuid,nodev,
noatime, errors=panic,user xattr,acl,barrier=1,nomblk io submit,
data=ordered,discard 0 0

/dev/fuse /mnt/shell/emulated fuse rw, nosuid, nodev, relatime,
user 1d=1023,group 1d=1023,default permissions,allow other 0 O

Android ROM Storage Layout

shell@android:/ $ cat /proc/partitions

major minor #blocks name

179 0 7467008 mmcblkO

179 1 12288 mmcblkOpl
179 2 8192 mmcblkOp2
179 3 665600 mmcblkOp3
179 4 453632 mmcblkOp4
179 5 512 mmcblkOpb5
179 6 10240 mmcblkOp6
179 i 5120 mmcblkOp7
179 8 512 mmcblk0Op8
179 9 6302720 mmcblkOp9

NU30

So, where is my stuff?!

shell@android:/ $ 1ls -1 /dev/block/platform/sdhci-tegra.3/by-name/

lrwxrwxrwx
lrwxrwxrwx
lrwxrwxrwx
lrwxrwxrwx
lrwxrwxrwx
lrwxrwxrwx
lrwxrwxrwx
lrwxrwxrwx

lrwXrwxrwx

root
root
root
root
root
root
root
root

root

root
root
root
root
root
root
root
root

root

2013-02-06
2013-02-06
2013-02-06
2013-02-06
2013-02-06
2013-02-06
2013-02-06
2013-02-06
2013-02-06

03
03
03
03
03
03
03
03
03

: 54
: 54
:54
:54
:54
:54
:54
:54
:54

CAC
LNX
MDA
MSC
PER
SOS
UDA
USP

-> /dev/block/
/dev/block/mmcblk0p4
/dev/block/mmcblk0p2
/dev/block/mmcblk0p8
/dev/block/mmcblk0p5
/dev/block/mmcblk0p7
/dev/block/mmcblk0pl
/dev/block/mmcblk0p9
/dev/block/mmcblk0p6

Legend: APP is system, SOS is recovery, UDA is for data...

Why should we care about it?

For a couple of reasons:

Backup
Recovery
Software updates
Error checking
Board design
Curiosity

Android Open Source Project

“Semi-Open source”

Maintained by Google

Contributions accepted using “gerrit”

Mostly Apache licensed

Provides templates for building an Android system, including
bootloaders etc.

Vendors derive their products for their hardware layout (BSP,
binaries, etc.)

Provides the complete source code (but usually missing proprietary
binaries) for a bunch of supported devices (e.g. Galaxy Nexus,
Motorola Xoom, Nexus 4/7/10, Android Emulator)

AOSP ROM building

e In asingle line:
o just do whatever they say in http://source.android.com

e In a bit more:
o Set up a 64bit Linux development machine. Officially Supported:

m Ubuntu 10.04 LTS (Lucid) for versions < JB 4.2.1

m Ubuntu 12.04 LTS (Precise Pangolin) for versions >= JB 4.2.1
mkdir / cd / repo init / repo sync
. build/envsetup.sh
lunch <Your Config>
make # This will take a while... Make some coffee || Get™ a good nap.
flash/boot/run/pray/debug/show off at xda-developers et al.

O O O O O

A bit more about flashing

When flashing to devices — make sure the bootloader is unlocked. For
“Google phones”:

O adb reboot-bootloader

o fastboot oem unlock

o Confirm on device

Then you can flash all images using “fastboot -w flashall”,
or particular images using “fastboot flash -w <partition> <image>"

Some tips on flashing custom builds:
o Having trouble using “fastboot flash” due to mismatched broadband versions?
o Try modifying device/<vendor>/<product>/board-info.txt

o Before building, make sure you have the “binary-blobs”, under the vendor/
subtree (note the difference from device/)

m Hint: proprietary-blobs.txt

Building kernels

® Get a kernel to start from — or make one
o 3.4+ kernel are pretty much “Android-Ready”

® Checkout/config/make

o Don't get too freaky — avoid breaking “Userspace” (a.
K.a “Android”)

® Replace prebuilt kernel with your generated bzlmage

® Rebuild Android

® Pray/play/laugh/cry/show off on XDA-dev/Q&A on
android-kernel / android-porting / android-*

Getting Kernel Sources

$ git clone https://android.googlesource.com/kernel/<target>.git

Some kernel targets hosted by the AOSP:

® Common - common kernel tree. Based on Linux 3.4+
msm — Qualcomm msm (HTC Nexus One)

Tegra — Nvidia's Tegra (Motorola Xoom)
Goldfish - Android emulator (2.6.29)

O
® Omap — Tl's OMAP (Samsung Galaxy Nexus)
O
O

NU30

e Well... Yes!

e A nice thing about Android — system and kernel are
reasonably decoupled

e “It's just an emulator” - and most of its consumers are only
interested in testing applications, so “don't fix it if it ain't
broken”

e The source for a stable X86 3.4 goldfish port can be found in
http://github.com/ronubo/goldfish-3.4
o Use at your own risk

e Talk to me if you need a 3.5+/3.6+/3.7+ goldfish porting.

e TIP: ${ANDROID BUILD TOP}/external/qemu/distrib/build-kernel.sh

AOSP case study: Building a
Jelly Bean emulator

43 Applications Places System ‘)@ = UsA 1y «) sun Jul 22, 10:23PM @ ron
ron@nubo-labl: ~/Android/JB_Master_gerrit

File Edit View Terminal Tabs Help

JB build!! $ ron@nubo-labl: ~/Android/|B_Master_gerrit

ron@nubo-1labl:~/Android/Arm X86/XX$ cd ../../]B Master gerrit/
ron@nubo-labl:~/Android/JB Master gerrit$ ls

abi bionic bootable build buildOut.out cts dalvik development device docs external frameworks gdk hardware 1libcore 1libnativehelper Makefile ndk out packages pdk prebuilts sdk system
ron@nubo-labl:~/Android/JB Master gerrit$. build/envsetup.sh
lincluding device/asus/grouper/vendorsetup.sh

including device/generic/armv7-a-neon/vendorsetup.sh

including device/generic/armv7-a/vendorsetup.sh

including device/moto/wingray/vendorsetup.sh

including device/samsung/crespo4g/vendorsetup.sh

including device/samsung/crespo/vendorsetup.sh

including device/samsung/maguro/vendorsetup.sh

including device/samsung/toro/vendorsetup.sh

including device/ti/panda/vendorsetup.sh

including sdk/bash completion/adb.bash
ron@nubo-labl:~/Android/JB Master gerrit$ lunch full x86-eng

PLATFORM VERSION CODENAME=AOSP
PLATFORM_VERSION=4.0.9.99.999.9999.99999
TARGET PRODUCT=full_ x86

[TARGET _BUILD VARIANT=eng

TARGET BUILD TYPE=release

TARGET BUILD APPS=

[TARGET_ARCH=x86

[TARGET_ARCH_VARIANT=x86

HOST_ARCH=x86 .

HOST 0S=linux -

HOST 0S_EXTRA=Linux-3.0.0-19-generic-x86 64-with-Ubuntu-16.04-lucid

HOST BUILD TYPE=release Sun, July 22
BUILD ID=OPENMASTER Charging, 50%
0UT7DIR =out

© © 5556:<build>

ron@nubo-labl:~/Android/JB Master gerrit$ emulator-x86 &
[1] 474
ron@nubo-labl:~/Android/JB Master gerrit$ emulator: WARNING: system partition size adjusted to match im

Failed to create Context ©x3005
emulator: WARNING: Could not initialize OpenglES emulation, using software renderer.
emulator: ERROR: Unable to create ADB server socket: Address already in use

=
| sYM

[ron@nubo-labl... [i§ Downloads - Fil... & do-gitapply.sh (... ron@nubo-labl... i Computer - File... i Computer-File... [§ [Computer-Fil... 5 [.../InputMetho... £ kdiff3 © 5556:<build>

Android emulator storage

Goldfish kernel

Mount points on standard Goldfish 2.6.29 kernel:

mount

rootfs / rootfs ro 0 O

tmpfs /dev tmpfs rw,nosuid,mode=755 0 0

devpts /dev/pts devpts rw,mode=600 0 O

proc /proc proc rw 0 O

sysfs /sys sysfs rw 0 O

tmpfs /mnt/asec tmpfs rw,mode=755,gid=1000 0 O

tmpfs /mnt/obb tmpfs rw,mode=755,gid=1000 0 O
/dev/block/mtdblock0 /system yaffs2 ro 0 O
/dev/block/mtdblockl /data yaffs2 rw,nosuid,nodev 0 O
/dev/block/mtdblock2 /cache yaffs2 rw,nosuid,nodev 0 0
cat /proc/mtd

dev: size erasesize name

mtd0: 0b460000 00020000 "system"

mtdl: 04000000 00020000 "userdata"

mtd2: 04000000 00020000 "cache"

#Note: Yaffs2 is obsolete. On ICS and JB devices /system is mounted as
extd.

NU30

Using the Android Emulator

e First and foremost: Build for X86 and use KVM!
o Check capability with “kvm-ok”
o Feature must be enabled in your computer's bios
o cat /proc/cpuinfo and search for vmx/avm(intel VT/AMD-V)
e Use hardware keyboard
o Much more comfortable then “touching” the soft keyboard
o Although there are uses for that

o Enable keyboard in external/gemu/android/avd/hardware-
properties.ini — and rebuild external/gemu

e \Windows users: Use HAXM (Intel's HW Acceleration Manager)

Additional X86 AOSP

configurations

® There are more emulation configurations which are supposed to be
supported by AOSP, but tend to be broken
O Building for non Linux devices from Linux
B lunch sdk-eng && make sdk_win
O Building for virtual box and other virtual machines:
B lunch vbox_ x86-eng
B make android_disk vdi

B Translate VDI image to your VM hard-drive format (e.g. gcow...)

® Motivation for using such configurations:

Development teams working with different Operating Systems, but
willing to use the same emulated platform

Adjusting AOSP build for
KVM / QEMU (a teaser

e Motivation - fast linux bringup procedure

o First, bring-up the target OS on a virtual machine
o Verify basic functionality

o Then adjust for a designated hardware

e How to do it?

o Short answer - use emulator images with some
adjustments, mount ext4, set sdcard etc...
o Pragmatic answer: In the next session

When to use the emulator

The short answer would be — whenever you can.

O
O
O
O
O

Overall — it is a good ROM.

Great for application development

m when used with KVM

Has no dependency on a particular hardware
Very easy to build

Integrates well with the AOSP tools
Relatively well documented

Most used ROM for a reason.

S

Android Projects

Various forks to the Android Open Source Project:

e AOSP (4.2.2+ upstream) — The root of all (good?)
e Android-X86 (4.0.4 stable, 4.2.1+ upstream)

e Android-IA (4.2.1+ upstream)
®

Many other forks

o CyanogenMod

o Buildroid/AndroVM

o And many others...

o Not all are known or Open-Sourced

NU30

A custom, open source distribution spawned off
the AOSP

e Provides optimizations and support for over
40 different devices, along with binaries

e Builds routine similar to AOSP (note:
“brunch”)

e http://wiki.cyanogenmod.com/wiki/Main_Page

Android, X86, Google, Android Builders
Intel and Android-X86 Summit 2013

Android and X386

X86 ROMs (by chronological order):

e Android-X86 (Debut date: 2009)
o http://android-x86.0rg

e Emulator-x86 (Debut date: 2011)

o http://source.android.com

e Android-IA (Debut date: 2012)
o https://01.org/android-ia

The common reference, having the most recent version of
the Android platform (Userspace) versions.
Provides the QEMU based Android Emulator-

+ Works on any hosted OS

+ Supports multiple architectures

- But slow on non X86 ones

- Performs terribly if virtualized

- Has no installer for X86 devices

- Very old kernel

+/- An emulator. For better and for worse.

Android-X86

+ Developed by the open source community

+ Developer/Linux user friendly

+ Multi-Boot friendly

+ Generally supports many Intel and AMD devices

+/- But of course requires specific work on specific HW
+ VM friendly

+ Mature, Recognized and stable

- Delays in new releases (You can help!)

- Current version (4.2.1) still needs some work on important features
such as Bluetooth, Camera etc.
+ The ICS 4.0.4 release is amazing - including running ARM apps

Android-l1A

+ Installer to device

+ Relatively new versions of android and kernel

+ Works great on ivy-bridge devices

+ Integrated Ethernet Configuration Management

- Development for devices based on intel solutions only

- Very unfriendly to other OS's

- Not developer friendly — unless they make it such

- Community work can be better. But it is seems to be getting better
- Intel phones are not based on it (at the moment)

+ Made impressive progress in the last couple of months!

Android 1s Linux

e Android is Linux
o Therefore the required minimum to run it would be:
A Kernel
A filesystem
A ramdisk/initrd... Whatever makes you happy with your kernel's
init/main.c's run_init_process() calls.
See http://Ixr.linux.no/linux+v3.6.9/init/main.c

o This means that we can achieve full functionality with
m A kernel (+ramdisk)
m A rootfs where Android system/ will be mounted (ROM)
m Some place to read/write data

Android-lA is Android

Android-IA is, of course, Linux as well.
However, it was designed to conform to Android OEM's partition layout,
and has no less than 9 partitions:

boot - flashed boot.img (kernel+ramdisk.img)

recovery - Recovery image

misc - shared storage between boot and recovery

system - flashed system.img - contents of the System partition
cache - cache partition

data - data partition

install - Installation definition

bootloader - A vfat partition containing android syslinux bootloader
fastboot - fastboot protocol (flashed droidboot.img)

Note: On android-ia-4.2.1.-r1, the bootable liveimg works with a single
partition. It still has its issues - but it is getting there.

O O O 0O O O O O O

Android-X86 Is Linux

e One partition with two directories
o First directory — grub (bootloader)
o Second directory — files of android (SRC)
m Kkernel
m initrd.img
m ramdisk.img
o system
o data
e This simple structure makes it very easy to work and debug

Note: Also comes with a live CD/installer. Very convenient.

Android-|IA boot process

e Start bootloader

e The bootloader starts the combined kernel +
ramdisk image (boot.img flashed to /boot)

e At the end of kernel initialization Android's
/init runs from ramdisk

e File systems are mounted the Android way —
using fstab.common that calls from init.
<target>.rc

Android-X86 boot process

e Start bootloader (GRUB)
e Dbootloader starts kernel + initrd (minimal linux) + kernel
command line
At the end of kernel initialization
o run the /init script from initrd.img
o load some modules, etc.
o At the end change root to the Android file system
Run the /init binary from ramdisk.img
o Which parses init.rc, and starts talking “Android-ish”

Which one Is better?

It depends what you need:

Developer options?

Debugging the init process?
Support for Hardware?

Support for OTA?

Licensing?

Participating in project direction?
Upstream features?

O O O O O O O

O

There is no Black and White.

An hybrid approach

Use Android-X86 installer system
And put your desired android files (matching
kernel/ramdisk/system) in the same partition.
Use the Android-X86 chroot mechanism
o Critics: Does redundant stuff
o But that's just a hack anyway — devise specific solutions for
specific problems
This way, we can multiple boot various projects:
o Android-IA
o AOSP
o Any other OS...

Multi-boot recipe with

legacy GRUB (simplified

Repartition existing Linux partition (Don't do that...)

Install Android-X86

Add entries to GRUB

Reboot to Android-X86 debug mode

Copy Android-IA files from a pendrive or over SCP

o For the former: cp /mnt/USB/A-IA/ /mnt && sync

o /mntis the root of Android-X86 installed partition
(e.g. (hd0,1)/...

Update GRUB entries and update GRUB

Voila :-)

Less simplified procedure: Debug GRUB... :~(

** Note: Replace Android-IA with AOSP to boot AOSP built files
(system.img / kernel / ramdisk.img) on your target device.

Multi-boot recipe using
GRUB2Z

Repartition existing Linux partition (Don't do that...)
Create a mount point for your multi-booting android
o Can make a partition per distribution, it doesn't really matter.
o For this example let's assume all Android distributions will co exist on the same partition,
and that it is mounted to /media/Android-x86
Build your images
o AOSP: Discussed before
o Android-x86: . build/envsetup.sh && lunch x86 && make iso_img
o Android-IA:
m . build/envsetup.sh && lunch ivb && make allimages # liveimg for a live CD
m . build/envsetup.sh && lunch bigcore && make allimages # liveimg for a live CD
Create directories for your projects (e.g. jb-x86, A-IA, AOSP) under your mount point (e.g.
/media/Android-x86)
From Android-X86's out/product/target. Copy initrd.img to all projects.
o Can of course only copy ramdisk to one location.
From all projects — copy kernel, ramdisk.img, system/ and data/to to the corresponding
directory under your mount point.
Add entries to GRUB and update grub.
e #e.g.sudo vi/etc/grub.d/40_custom && update-grub

Multi-boot recipe with

GRUB2Z2 - A numerical example

$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sdab 451656948 394848292 34199920 93% /

udev 1954628 4 1954624 1% /dev

tmpfs 785388 1072 784316 1% /run

none 5120 0 5120 0% /run/lock
none 1963460 2628 1960832 1% /run/shm

/dev/sdal 15481360 5165416 9529464 36% /media/Android-
x86

A numerical example (cont.)-
/etc/grub.d/40 custom

#H### JB-X86

menuentry 'jb-x86' --class ubuntu --class gnu-linux --class gnu --class os {
recordfail

insmod gzio

insmod part._msdos

insmod ext2

set root='(hd0,msdos1)'

echo 'Loading Android-X86'

linux /jb-x86/kernel quiet androidboot.hardware=android_x86 video=-16 SRC=/jb-x86
initrd /jb-x86/initrd.img

}

A numerical example (cont.)

[etc/qrub.d/40 custom

android-IA

menuentry 'Android-IA' --class ubuntu --class gnu-linux --class gnu --
class os {

recordfail

insmod gzio

insmod part msdos

insmod ext?2

set root="' (hd0O,msdosl)"'

echo 'Loading Android-IA'

linux /A-IA/kernel console=ttyS0 pci=noearly console=tty0 loglevel=38
androidboot.hardware=ivb SRC=/A-IA

initrd /A-IA/initrd.img
}

NU30

Coming up next...

e |n this session:
o We have listed various ways to build ROMs for
m AOSP devices
m AOSP emulator(-X86)
m Android-X86
m Android-1A
o We have also discussed multi booting several
configurations using the Android-X86 build system
e |n the next session (right after the break!), we will see
how to create and modify those projects for easy
customizable X86 developer friendly targets!

References

The AOSP is hosted at http://source.android.com

The Android-x86.org project is hosted at http://Android-X86.org

The Android-IA project is hosted at https://01.org/android-ia

The presentation is available at http://events.linuxfoundation.

org/images/stories/slides/abs2013_munitz.pdf

e Device trees shown in the next session will be updated at
https://github.com/ronubo/abs2013 _aosp_kvm

e There is some more relevant material in https://github.com/ronubo/

e Updates and relevant information will be posted at

https://plus.google.com/100590449141172132889

e You are welcome to contact me at:
o ron@nubosoftware.com
o ron@android-x86.org (preferable for topics related to the lecture)
o Google+ / LinkedIn / Owl (;-))

http://source.android.com
http://android-x86.org
https://01.org/android-ia
http://events.linuxfoundation.org/images/stories/slides/abs2013_munitz.pdf
http://events.linuxfoundation.org/images/stories/slides/abs2013_munitz.pdf
http://events.linuxfoundation.org/images/stories/slides/abs2013_munitz.pdf
https://github.com/ronubo/abs2013_aosp_kvm
https://github.com/ronubo/abs2013_aosp_kvm
https://github.com/ronubo/
https://plus.google.com/100590449141172132889
https://plus.google.com/100590449141172132889

Android Builders
Thank You Summit 2013

