

The kernel report

(Korea Linux Form 2012 edition)

Jonathan Corbet
LWN.net

corbet@lwn.net

October, 2011

A slow moment at the Kernel
Summit

The 3.1 kernel
October 24, 2011
(8,693 changesets,
 1,168 developers)

A 95 day cycle

Since then...

61,000 changesets merged
2998 developers have contributed
390 employers have contributed
The kernel is 1.24 million lines bigger

Recent release history

Release Date Days Csets Devs
3.1 Oct 24 95 8,693 1,168
3.2 Jan 4 72 11,828 1,309
3.3 Mar 18 74 10,550 1,247
3.4 May 20 63 10,899 1,286
3.5 July 21 62 10,957 1,195
3.6 Sep 30 71 10,247 1,216

Most active employers (3.1-3.6)

(None) 13.1%
Red Hat 10.2%
Intel 8.9%
(unknown) 5.7%
Texas Inst. 3.8%
SUSE 3.5%
Linaro 3.3%
IBM 2.9%
Wolfson Micro 2.2%
Google 2.1%
consultants 2.1%

Broadcom 1.9%
Samsung 1.9%
Ingics Tech 1.7%
Qualcomm 1.7%
Oracle 1.7%
Freescale 1.2%
Vision Engraving 1.2%
NVidia 1.1%
Wind River 1.0%
Linux Foundation 1.0%
AMD 1.0%

Employer participation since 2.6.26

Volunteer participation

Mobile/embedded participation

Stable updates

Most users do not run mainline kernels
The run distributor kernels...
...that are built on the stable series

Stable updates
Get fixes to users after a mainline release

Stable updates

Every kernel supported for one development cycle
(3.5 reaching end of life now)

Occasional kernels for a two-year period
Long-term support initiative
3.0, 3.4 currently

All done by Greg Kroah-Hartman

Other long-term kernels

3.2.x
Ben Hutchings
For as long as Debian 7.0 is supported

2.6.32
Willy Tarreau
Infrequent updates

Lots going on

What has been accomplished...

...and what's coming?

The 3.7 kernel

Due in early December

Features
64-bit ARM support
Xen on ARM
Supervisor mode access prevention
TCP fast open (server side)
IMA integrity extension

Networking

Performance/protocol work
TCP proportional rate reduction [v3.2]
TCP fast open [v3.6, v3.7]
TCP friends

Feature work
Near-field communications (NFC) [v3.1]
Network priority controller [v3.3]
OpenVswitch [v3.3]
TCP buffer size controller [v3.3]
TCP connection repair [v3.5]
IPv6 NAT [v3.7]

Bufferbloat work

Byte queue limits [v3.3]
Keep device queues small

CoDel queue management [v3.5]
Let router queues drain

TCP small queues [v3.6]
Minimize in-flight data in the stack

Ongoing
Debloat drivers and subsystems
Continued queue management work
Wireless issues

Embedded Linux

Lots going on
ARM architecture
Android integration
...

The ARM architecture

...poses some challenges
Not really a platform
Lots of competing vendors
Short product cycles

Somebody needs to get a grip in the ARM community.
I do want to do these merges, just to see how screwed
up things are, but guys, this is just ridiculous. The pure
amount of crazy churn is annoying in itself, but when I
then get these "independent" pull requests from four
different people, and they touch the same files, that
indicates that something is wrong.
– Linus Torvalds, March 17, 2011

The ARM mess

Lots of code from lots of vendors

This is exactly what we had wished for!
Just needed some more coordination

Fixing ARM

New ARM maintainer oversight
Get ARM developers working together

Lots of code consolidation
Fix per-platform duplicated code
Good common abstractions

(Pin control, regmap, regulator, …)
Move toward device tree
Move drivers out of ARM architecture code

Interesting ARM work

big.LITTLE
Hybrid multiprocessing with diverse ARM cores

AARCH64
The 64-bit ARM processor [v3.7]

Single zImage
One kernel to bind them all and rule them

And, of course
...lots of new SoC models with each release

Android integration

A significant fork of the Linux kernel
...but still rather over-dramatized

Most Android code in the kernel now
In the staging tree

Exceptions
Wakelocks — we have other solutions
ION allocator — nobody has done it yet
Netfilter changes

System security

Hardening efforts are continuous
Removing information disclosure issues
Link restrictions [v3.6]

Seccomp filters [v3.5]

Supervisor mode access prevention [v3.7]

IMA integrity extension [v3.7]

Security module stacking

UEFI secure boot

The idea: restrict booting to known systems

Good:
Block boot-time malware
Ensure system is running the expected code

Bad:
Tool for system lockdown
Various practical hassles

Current thinking (x86)

Sign a minimal bootloader with a Microsoft key

Boot arbitrary signed kernel from there

No plans for Linux-specific signing keys

The cost (1)

Linux is dependent on Microsoft's good will

This solution is x86-only
Windows 8 ARM systems must be locked down

Only distributor-provided kernels will boot

The cost (2)

No arbitrary code running in kernel mode

Thus, no:
kexec()
User-space drivers doing DMA
No user-space access to I/O ports or memory
Unsigned kernel modules
…

Most of this is likely for v3.7.

Filesystems

Slowing down a little
Settling with ext4 and btrfs

Ext4
Large block support [v3.2]
Metadata checksumming [v3.5]
Snapshots
Inline data

Btrfs
Send/receive [v3.6]
RAID 5/6

F2FS

Flash-friendly filesystem
Posted Oct. 5

Aimed at high performance on NAND flash
Large segment sizes
Modified log-structured filesystem design
Two garbage-collection algorithms

Scheduling - NUMA

Sched/NUMA
Assign a “home node” to each process
Keep processes and allocations at home
Migrate if local allocations become difficult

Scheduling - NUMA

Sched/NUMA
Assign a “home node” to each process
Keep processes and allocations at home
Migrate if local allocations become difficult

AutoNUMA
Assume that processes will wander
Relocate memory to a process's current node
Expensive usage-tracking mechanism

Other scheduling issues

Workload-specific performance regressons
3.6 PostgreSQL regression

Deadline scheduling
Has a new maintainer
Should still go in someday

Power-aware scheduling
What is the right policy?

Per-entity load tracking

Scheduling - realtime

The -rt patch set still exists

Grand plans to mainline most of it
...but actual movement is slow

Testing

Kernel problems tend to be:
Hardware dependent
Workload dependent

As a result: they are hard to find automatically
That's what you all are for!

Can we do better?

Trinity
Smart fuzz testing

MMTests
Find memory
performance regressions
early

Linsched
Simulate the scheduler
with lots of workloads

Wu Fengguang's build-
and-boot tester

44 credited bug reports
for v3.6

xfstests
Increasingly capable
filesystem test suite

Control groups

The kernel subsystem developers love to hate

What we're really talking about

Control groups

Organize processes into
groups

A nested hierarchy
Indeed: multiple
hierarchies

What we're really talking about

Control groups

Organize processes into
groups

A nested hierarchy
Indeed: multiple
hierarchies

Controllers

Apply a policy to
processes in a control
group

Scheduling
block I/O
memory use
network priority
CPU affinities
…

Control group issues

Multiple hierarchies
Which group is a given process in?

Controller issues

Inconsistent (or nonexistent) hierarchy support
Warnings added in v3.7

No coordination between controllers
Hard to share infrastructure
Interesting interactions

To be done:
Regularize hierarchical behavior
High-level oversight of all controllers

Containers

Run an isolated Linux on the host kernel

Needs:
Proper control groups and controllers
Lots of internal namespace work
Checkpoint/restore
Lots of distribution-level work

Lots more I could talk about

Transparent huge pages
Nonvolatile RAM
Block I/O controllers
ptrace() and uprobes
udev
Power management
Sandboxing
Tracing
Checkpoint/restore
...

Some general concerns

Regression tracking

Regressions are the most important bugs
They break systems that work now

We no longer have any formal regression tracking

Regression tracking

Regressions are the most important bugs
They break systems that work now

We no longer have any formal regression tracking

How do we know the kernel is
getting better over time?

Complexity

Arguably nobody understands some
parts of the kernel

Complexity

Hardware complexity

Software needs
Scalability
lockless algorithms

Complexity

Hardware complexity

Software needs
Scalability
lockless algorithms

Innovation

Interesting things are now done
on Linux first

Proprietary forces

Software patents
We all get radiated when it goes nuclear

Binary blobs
Let the community help!

Locked-down hardware
Let your customers play

I'm not worried about...

The health of Linux as a whole

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

