Linux Kernel Memory
Leak Detection

Catalin Marinas
LinuxCon Europe 2011

Agenda

* Introduction

* Overview

* Object Tracking

* Memory Scanning
* Limitations

* Usage

* Tips

* Example

Introduction

First kmemleak patches posted on LKML — January 2006
* Based on Linux 2.6.15

* Support for both ARM and x86

* Using the object size as a weak form of type identification
* Precise addresses using modified container of macro

* False positives caused by imprecise type identification

Found real leaks from the first versions

Well received by the community
* LWN article — http://lwn.net/Articles/187979

Merged into the mainline kernel —June 2009

* Linux 2.6.31
* x86, ARM, PPC, MIPS, S390, SPARC64, SuperH, Microblaze, TILE

Overview

* Memory leak example:
device->name = kstrdup (device path, GFP NOFS);

ret = find next devid(root, &device->devid);
if (ret) {
kfree (device) ;

return ret;

}
* Small leak initially but may have consequences with long
uptime

* If the code is simple, the error could be caught by static
analysers

* Not trivial for more difficult leaks (for example reference
counting)

Overview (cont’'d)

Kmemleak is similar to a tracing garbage collector using tri-
colour marking (Wikipedia http://bit.ly/g2cSle)

* White: objects that could be memory leaks
* Grey: objects known not to be memory leaks

* Black: objects that have no references to other objects in the
white set

Kmemleak tracks objects allocated via kmalloc,

kmem cache alloc,vmalloc,alloc bootmem and
pcpu alloc

Page allocations are not tracked

* Overlapping with other allocators

* Page cache pages do not contain kernel objects

There are several calls to kmemleak alloc outside standard
allocators

Object Tracking

* Kernel memory allocations are recorded by kmemleak
* Itis important that all memory allocations are tracked to avoid
false positives
* Kmemleak records the pointer to object, size, backtrace,
jiffies, current->pidand current->comm
* Metadata is stored in a kmemleak object structure

* The kmemleak object cacheis created with
SLAB NOLEAKTRACE flag to avoid recursive calls into kmemleak

* Additional kmemleak scan area structures may be allocated
for an object when only part of the object is relevant

* Allocation mask preserves GFP_ KERNEL and GFP_ATOMIC used
by the allocator caller

* Object boundaries added to a priority search tree

Object Tracking (cont'd)

* Objects are no longer tracked once freed (kfree etc.)
* Kmemleak frees the corresponding metadata
* To avoid a recursive call to the kmem cache free function,
kmemleak metadata is freed via an RCU callback
* Memory allocations happen before kmemleak is fully
initialized
* Prior calls to the kmemleak API are logged into a static
early 1log[CONFIG DEBUG KMEMLEAK EARLY LOG SIZE]
array
* The early log is replayed after kmemleak is initialized

Memory Scanning

* Kmemleak thread scans the memory periodically to identify
object referencing (graph)

* There is no type information for memory locations
* An address can point anywhere inside an object (1ist head)
* Kmemleak API allows scanning of specific areas within an object

LIST HEAD(test list) struct test node

next header[25] header[25]
prev list head list head
next next
prev prev
footer[25] footer[25]

Memory Scanning (cont'd)

Scanning preparation

* Most objects coloured as white initially (with few exceptions)
* Known false positives are marked as grey

* Ignored objects are coloured black

Scanning starts with the root memory blocks
* Data and BSS sections

* Per-CPU sections

* The mem map array

* Task stacks (optional)

Objects referenced during the root memory scanning are
marked as grey

CRC32 calculated for each scanned object

Memory Scanning (cont'd)

Scanning continues with the grey objects
* Any referenced white object is marked as grey
* Completes when all the grey objects have been scanned

The remaining white objects are considered unreferenced and
reported as memory leaks

Scanning the memory could take a long time (minutes)

* Cannot lock the system during scanning

* Memory allocation/freeing can still happen during scanning
* Objects are modified (added/removed from lists etc.)

Kmemleak uses RCU list traversal to avoid locking

Recently allocated objects or objects modified since the
previous scan are coloured grey initially

Limitations

* False negatives

* Leaks may be hidden by memory locations looking like real
addresses

* Type identification is not possible
* Task stacks have many address-like values
* The leak will eventually be found if running for long enough or on
a wider range of platforms
* False positives
* Objects falsely reported as leaks

* Usually for objects referenced from other objects that are not
tracked by kmemleak (like page allocations)

* Object referenced via a modified pointer (like physical address)

* APl provided for annotating false positives

Limitations (cont'd)

* Does not allow overlapping objects
* All pointers must be real addresses in the kernel virtual space

* Per-CPU allocations are scanned but never considered leaks
* Non-virtual address pointers cannot be tracked (IOMMU etc.)

* ioremap mappings are not tracked

» System performance slightly affected

* Every slab memory allocation is logged by kmemleak together
with the backtrace

* Memory freeing is logged by kmemleak and an RCU callback
scheduled to clean up the metadata

Usage

Kmemleak API described in Documentation/kmemleak.txt
CONFIG DEBUG KMEMLEAK=y

CONFIG DEBUG KMEMLEAK EARLY LOG SIZE=400
(default) a a -
Allocation/freeing API

* kmemleak alloc: memory allocation callback

* kmemleak free: memory freeing callback

* kmemleak alloc recursive: slab allocation callback

* kmemleak free recursive: slab freeing callback
False positive annotation API
* kmemleak not leak:never report an object as leak

* But prefer to find where the object is referenced from and use
kmemleak alloc

Usage (cont'd)

* False negative reduction API
* kmemleak scan area:only scan an object area
* kmemleak no scan:do not scan the object
* kmemleak ignore:do notscan orreport an object as leak
* kmemleak erase:erase a pointer variable
* User level reporting

* kmemleak: N new suspected memory leaks (see /sys/
kernel/debug/kmemleak)

* mount -t debugfs nodev /sys/kernel/debug/
* cat /sys/kernel/debug/kmemleak

* Kmemleak behaviour can be modified at runtime by writing to
the /sys/kernel/debug/kmemleak file

- off: disables kmemleak (irreversible)

Usage (cont'd)

stack=on|off: enable|disable task stack scanning (default on)
scan=on | of f: enable|disable the scanning thread (default on)
scan=<secs>: set the scanning period (default 600)

scan: trigger a memory scan

clear: clear the list of memory leaks reported (current white
objects coloured grey)

dump=<addr>: show information about an object at <addr>

* Kmemleak can be disabled at boot-time by passing
kmemleak=off on the kernel command line

Tips

* Kmemleak only shows backtrace to the allocation point
* Objects are reported in the order they were allocated
* Check the kernel commit log and possibly bisect

* Analyse the backtrace (using addr21ine) and follow where
the reported pointer was stored

* Possibly add printk calls throughout the kernel
* Check the status of the object referencing the leaked pointer
* echo dump=<addr> > /sys/kernel/debug/kmemleak
* If freed, check the clean-up code
* If still present, check for code overriding the leaked pointer

* Check list deletion, reference counting
* It could be a false positive

Example

kmemleak: 1 new suspected memory leaks (see /sys/kernel/
debug/kmemleak)

cat /sys/kernel/debug/kmemleak
unreferenced object 0xef42d000 (size 28):
comm "khubd", pid 189, jiffies 4294937550 (age 2543.370s)
hex dump (first 28 bytes):
00 01 10 00 00 02 20 00 08 dO 42 ef 08 dO 42 ef
00 00 00 OO0 00 OO0 00 0O ff ff ff ff

backtrace: Slab
[<c0080fel>] create object+0xal/0Oxlac allocator
<c007eac5>] kmem cache alloc+0x8d/0Oxdc invoked
<c0la966d>] ispl760 urb enqueue+0x2f9/0x358

]
[]
[]
[<c019bbbd>] usb _hcd submit urb+0x75/0x574
[]
[]
[]

<c019d8f1>] usb start wait urb+0x29/0x80
<c01l9daad>] usb control msg+0x89/0xac
<c0197£43>] hub port init+0x4fb/0x9c8

Example (cont'd)

addr2line -i -f -e vmlinux c0la966d

gh alloc
drivers/usb/host/ispl760-hcd.c:382
ispl760 urb enqueue
drivers/usb/host/ispl760-hcd.c:1531

vi drivers/usb/host/ispl760-hcd.c +1531

Inlined
ep queue = §&priv->controlghs; function
gh = gh alloc(GFP_ATOMIC) ;
if (!'gh) {
retval = -ENOMEM; Pointer

goto out; stored

}
list add tail(&gh->gh list, ep queue);
urb->ep->hcpriv = gh;

Example (cont'd)

grep —n list del drivers/usb/host/ispl760-hcd.c

1017: list del (&gh->gh list); Object
vi drivers/usb/host/ispl760-hcd.c +1017 removed
void schedule ptds(struct usb hcd *hcd) from list
list for each entry safe(gh, ...) { Condition
false

list del(&gh->gh list);
1f (ep->hcpriv == NULL) <«
/* Endpoint has been disabled, so we
can free the associated queue head. */
gh free(gh);
) Function
not called

Example (cont'd)

grep —-n hcpriv drivers/usb/host/ispl760-hcd.c

1634: ep->hcpriv = NULL; Last
vi drivers/usb/host/ispl760-hcd.c +1634 reference
static void ispl760 endpoint disable(...) overridden

ep—->hcpriv = NULL;

/* Cannot free gh here since it will be parsed by
schedule ptds() */

schedule ptds (hcd);

Leak possibly caused by a race condition: schedule ptds
called from isp1760 irqgbefore
ispl760 endpoint disable cleared ep->hcpriv.

Questions

