Don't Play Dice With Random Numbers

H. Peter Anvin, Intel Open Source Technology Center
LinuxCon Europe 2012
Barcelona, Spain
Random numbers

• Random numbers are used in...
 – Games
 – Monte Carlo simulations
 – Security protocols

• Computers are not very random
 – Lots of effort goes into eliminating random behavior...

• “Good enough” randomness depends on the application
 – Security protocols have very high demands
 – Games usually not so much...
Randomness is subtle

• Improper use
 – A random number is only random once
 – Only random until the outcome is known

• There are no tests for randomness!
 – There are tests for *some types* of nonrandomness
 – General testing for randomness might be intractable \((P = \text{BPP} \text{ conjecture})\)
 – Need to understand the failure modes of the source
What could possibly go wrong?

- **Weak keys**
 - Several serious vulnerabilities in Linux distros already
- **Key disclosure**
 - Recent PS3 hack
- **Identifier collisions**
 - UUIDs are probabilistically unique
- ...
Pseudo-Random Number Generator

- Statistical properties
- Cycle length
- Resistance to analysis (“security”)
“God doesn't play dice.”

— Albert Einstein

“Wanna bet?”

— God
Hardware (true) Random Number Generator

Quantum events

Entropy source → Conditioner → CSPRNG → 83, 11, 78, ...

Integrity monitor → ERROR!

• Bandwidth
• Resistance to observation ("security")
• Failure modes
Intel Bull Mountain Technology (DRNG)
Linux Kernel Random Number Generator

Pool → CSPRNG

Pool → CSPRNG

Pool → CSPRNG

Arch hwrng

New in 3.6

Throttle

/dev/random

/dev/urandom

Kernel users
Linux Kernel Random Number Generator Inputs

- hwrng
- virtio
- TPM (new in 3.7)
- Arch hwrng

hwrng driver

Event timings

rngd (user space)

FIPS tests
rngd

- Necessary to get full benefit from a hardware or virtio RNG
- *Should be started as early as possible*
- Versions < 4 had significant problems
 - Hopefully all fixed now
- TPM harvesting conflicts with TrouSerS unless `rng-tpm` is available
 - Upstream in 3.7, probably an easy backport
 - TPM may need to be “provisioned”
 - If you don't need TrouSerS, don't run `tcsd`
rngd -r /dev/urandom
HAVEGE

• Claims to extract entropy from CPU indeterminism
• Some people swear by it...
• Unclear to what extent it actually works
 – “The source is so complex it is impossible to analyze”
 – Self-tests pass even with the timer readout removed
• It probably does provide some entropy
 – Consider to what degree you are willing to trust it
• Can be run in parallel with rngd
Administrator recommendations

• **Make sure that rngd is running**
 – Version 4 or higher strongly recommended
 – If not by default, please complain to your distribution
 – Run as early as possible
 • Avoid zero-entropy situation on boot

• **Make sure TPM is available**
 – May have to be provisioned
 – If you don’t need TrouSerS, don’t run `tcsd`

• **haveged** can be a complement, but not an alternative
 – Consider how much you trust it...
Application writer recommendations

• If you need *lots of randomness*:
 – Use a cryptographic library (OpenSSL, etc.)
 – A simple `librandom` may be available in the future

• If you need *a little randomness*:
 – Use `/dev/random` if you would rather fail than be insecure
 – Use `/dev/urandom` if you need “good enough for most things”

• Please conserve randomness
 – Not everyone has a hardware random source yet...
 – Don't use buffered I/O unless you really need to!

• Defer extraction as much as possible (especially daemons)
 – Entropy may be scarce at boot
Future work

• Policy interface
 – Allow rngd bypass and possibly direct use of architectural hwrng
 – Discussed in principle at Kernel Summit 2012
 – Still being architected

• Finish virtio-rng
 – Kernel (guest) side complete since 2008
 – Host (Qemu/KVM) side still in progress
 • Got stalled several times
 • Hopefully will get committed to Qemu git this week or next
Copyright acknowledgments

 - © 2012 Darren Hester, Creative Commons Attribution license

- **Lava lamp**, http://www.flickr.com/photos/skyfaller/111857525/
 - © 2006 Nelson Pavlosky, Creative Commons Attribution – Share Alike license

- **Diagram of Intel DRNG Entropy Source**
 - © 2011 IEEE Spectrum