
Introduction Usage & Integration Implementation

Continuous Memory Allocator
Allocating big chunks of physically contiguous memory

Michał Nazarewicz

mina86@mina86.com

Google

November 6, 2012

mailto:mina86@mina86.com
http://www.google.com/


Introduction Usage & Integration Implementation

Outline

1 Introduction
Why physically contiguous memory is needed
Solutions to the problem

2 Usage & Integration
Using CMA from device drivers
Integration with the architecture
Private & not so private CMA regions

3 Implementation
Page allocator
CMA implementation
CMA problems and future work



Introduction Usage & Integration Implementation

Outline

1 Introduction
Why physically contiguous memory is needed
Solutions to the problem

2 Usage & Integration
Using CMA from device drivers
Integration with the architecture
Private & not so private CMA regions

3 Implementation
Page allocator
CMA implementation
CMA problems and future work



Introduction Usage & Integration Implementation

The mighty MMU

Modern CPUs have MMU.

Virtual → physical address.

Virtually contiguous 6=⇒ physically
contiguous.

So why bother?



Introduction Usage & Integration Implementation

The mighty MMU

Modern CPUs have MMU.

Virtual → physical address.

Virtually contiguous 6=⇒ physically
contiguous.

MMU stands behind CPU.

There are other chips in the system.

Some require large buffers.

5-megapixel camera anyone?

On embedded, there’s plenty of those.



Introduction Usage & Integration Implementation

The mighty DMA

DMA can do vectored I/O.

Gathering buffer from scattered parts.

Hence also another name: DMA

scatter-gather.

Contiguous for the device 6=⇒

physically contiguous.

So why bother?



Introduction Usage & Integration Implementation

The mighty DMA

DMA can do vectored I/O.

Gathering buffer from scattered parts.

Hence also another name: DMA

scatter-gather.

Contiguous for the device 6=⇒

physically contiguous.

DMA may lack vectored I/O support.

DMA can do linear access only.



Introduction Usage & Integration Implementation

The mighty I/O MMU

What about an I/O MMU?

Device → physical address.

Same deal as with CPU’s MMU.

So why bother?



Introduction Usage & Integration Implementation

The mighty I/O MMU

What about an I/O MMU?

Device → physical address.

Same deal as with CPU’s MMU.

I/O MMU is not so common.

I/O MMU takes time.

I/O MMU takes power.



Introduction Usage & Integration Implementation

Reserve and assign at boot time

Reserve memory during system boot time.

mem parameter.
Memblock / bootmem.

Assign buffers to each device that might need it.

While device is not being used, memory is wasted.



Introduction Usage & Integration Implementation

Reserve and allocate on demand

Reserve memory during system boot time.

Provide API for allocating from that reserved pool.

Less memory is reserved.

But it’s still wasted.

bigphysarea

Physical Memory Manager



Introduction Usage & Integration Implementation

Reserve but give back

Reserve memory during system boot time.

Give it back

but set it up so only movable pages can be allocated.

Provide API for allocating from that reserved pool.

Migrate pages on allocation.

Contiguous Memory Allocator



Introduction Usage & Integration Implementation

Outline

1 Introduction
Why physically contiguous memory is needed
Solutions to the problem

2 Usage & Integration
Using CMA from device drivers
Integration with the architecture
Private & not so private CMA regions

3 Implementation
Page allocator
CMA implementation
CMA problems and future work



Introduction Usage & Integration Implementation

Using CMA from device drivers

CMA is integrated with the DMA API.

If device driver uses the DMA API, nothing needs to be changed.

In fact, device driver should always use the DMA API and never call
CMA directly.



Introduction Usage & Integration Implementation

Allocating memory from device driver

Allocation

1 void ∗my_dev_alloc_buffer(
2 unsigned long size_in_bytes, dma_addr_t ∗dma_addrp)
3 {
4 void ∗virt_addr = dma_alloc_coherent(
5 my_dev,
6 size_in_bytes,
7 dma_addrp,
8 GFP_KERNEL);
9 if (!virt_addr)

10 dev_err(my_dev, "Allocation failed.");
11 return virt_addr;
12 }



Introduction Usage & Integration Implementation

Releasing memory from device driver

Freeing

1 void ∗my_dev_free_buffer(
2 unsigned long size, void ∗virt, dma_addr_t dma)
3 {
4 dma_free_coherent(my_dev, size, virt, dma);
5 }



Introduction Usage & Integration Implementation

Documentation

Documentation/DMA−API−HOWTO.txt

Documentation/DMA−API.txt

Linux Device Drivers, 3rd edition, chapter 15.

http://lwn.net/Kernel/LDD3/

http://lwn.net/Kernel/LDD3/


Introduction Usage & Integration Implementation

Integration with the architecture

CMA needs to be integrated with the architecture.

Memory needs to be reserved.

There are early fixups to be done. Or not.

The DMA API needs to be made aware of CMA.

And Kconfig needs to be instructed to allow CMA.



Introduction Usage & Integration Implementation

Memory reservation

Memblock must be ready, page allocator must not.

On ARM, arm_memblock_init() is a good place.

All one needs to do, is call dma_contiguous_reserve().

Memory reservation

1 void __init dma_contiguous_reserve(
2 phys_addr_t limit);

limit Upper limit of the region (or zero for no limit).



Introduction Usage & Integration Implementation

Memory reservation, cont.

Reserving memory on ARM

1 if (mdesc−>reserve)
2 mdesc−>reserve();
3

4 +/∗

5 + ∗ reserve memory for DMA contigouos allocations,
6 + ∗ must come from DMA area inside low memory
7 + ∗/
8 +dma_contiguous_reserve(min(arm_dma_limit, arm_lowmem_limit));
9 +

10 arm_memblock_steal_permitted = false;
11 memblock_allow_resize();
12 memblock_dump_all();



Introduction Usage & Integration Implementation

Early fixups

On ARM

cache is not coherent, and
having two mappings with different cache-ability gives undefined
behaviour.

Kernel linear mapping uses huge pages.

So on ARM an “early fixup” is needed.

This fixup alters the linear mapping so CMA regions use 4 KiB pages.

The fixup is defined in dma_contiguous_early_fixup() function

which architecture needs to provide
with declaration in a asm/dma−contiguous.h header file.



Introduction Usage & Integration Implementation

Early fixups, cont.

No need for early fixups

1 #ifndef ASM_DMA_CONTIGUOUS_H
2 #define ASM_DMA_CONTIGUOUS_H
3

4 #ifdef __KERNEL__
5

6 #include <linux/types.h>
7 #include <asm−generic/dma−contiguous.h>
8

9 static inline void

10 dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
11 { /∗ nop, no need for early fixups ∗/ }
12

13 #endif

14 #endif



Introduction Usage & Integration Implementation

Integration with DMA API

The DMA API needs to be modified to use CMA.

CMA most likely won’t be the only one.



Introduction Usage & Integration Implementation

Allocating CMA memory

Allocate

1 struct page ∗dma_alloc_from_contiguous(
2 struct device ∗dev,
3 int count,
4 unsigned int align);

dev Device the allocation is performed on behalf of.

count Number of pages to allocate. Not number of bytes nor order.

align Order which to align to. Limited by Kconfig option.

Returns page that is the first page of count allocated pages.
It’s not a compound page.



Introduction Usage & Integration Implementation

Releasing CMA memory

Release

1 bool dma_release_from_contiguous(
2 struct device ∗dev,
3 struct page ∗pages,
4 int count);

dev Device the allocation was performed on behalf of.

pages The first of allocated pages. As returned on allocation.

count Number of allocated pages.

Returns true if memory was freed (ie. was managed by CMA)
or false otherwise.



Introduction Usage & Integration Implementation

Let it compile!

There’s one think that needs to be done in Kconfig.

Architecture needs to select HAVE_DMA_CONTIGUOUS.

Without it, CMA won’t show up under “Generic Driver Options”.

Architecture may also select CMA to force CMA in.



Introduction Usage & Integration Implementation

Default CMA region

Memory reserved for CMA is called CMA region or CMA context.

There’s one default context devices use.

So why does dma_alloc_from_contiguous() take device as an
argument?

There may also be per-device or private contexts.



Introduction Usage & Integration Implementation

What is a private region for?

Separate a device into its own pool.

May help with fragmentation.
For instance big vs small allocations.
Several devices may be grouped together.

Use different contexts for different purposes within the same device.

Simulating dual channel memory.
Big and small allocations in the same device.



Introduction Usage & Integration Implementation

Declaring private regions

Declaring private regions

1 int dma_declare_contiguous(
2 struct device ∗dev,
3 unsigned long size,
4 phys_addr_t base,
5 phys_addr_t limit);

dev Device that will use this region.

size Size in bytes to allocate. Not pagas nor order.

base Base address of the region (or zero to use anywhere).

limit Upper limit of the region (or zero for no limit).

Returns zero on success, negative error code on failure.



Introduction Usage & Integration Implementation

Region shared by several devices

The API allows to assign a region to a single device.

What if more than one device is to use the same region.

It can be easily done via “copying” the context pointer.



Introduction Usage & Integration Implementation

Region shared by several devices, cont

Copying CMA context pointer between two devices

1 static int __init foo_set_up_cma_areas(void) {
2 struct cma ∗cma;
3 cma = dev_get_cma_area(device1);
4 dev_set_cma_area(device2, cma);
5 return 0;
6 }
7 postcore_initcall(foo_set_up_cma_areas);



Introduction Usage & Integration Implementation

Several regions used by the same device

CMA uses a one-to-many mapping from device structure to CMA
region.

As such, one device can only use one CMA context. . .

. . . unless it uses more than one device structure.

That’s exactly what S5PV110’s MFC does.



Introduction Usage & Integration Implementation

Outline

1 Introduction
Why physically contiguous memory is needed
Solutions to the problem

2 Usage & Integration
Using CMA from device drivers
Integration with the architecture
Private & not so private CMA regions

3 Implementation
Page allocator
CMA implementation
CMA problems and future work



Introduction Usage & Integration Implementation

Linux kernel memory allocators

memblock

page allocator

the DMA API

kmalloc() vmalloc()

kmem_cache

mempool

gives memory to
may u

se

us
es uses

u
se
s

may use

may use



Introduction Usage & Integration Implementation

Linux kernel memory allocators

memblock

page allocator

the DMA API



Introduction Usage & Integration Implementation

Buddy allocator

Page allocator uses buddy allocation
algorithm.

Hence different names: buddy system
or buddy allocator.

Allocations are done in terms of orders.

User can request order from 0 to 10.

If best matching page is too large, it’s
recursively split in half (into two
buddies).

When releasing, page is merged with
its buddy (if free).



Introduction Usage & Integration Implementation

Pages and page blocks, cont



Introduction Usage & Integration Implementation

Migrate types

On allocation, user requests an unmovable, a reclaimable or
a movable page.

For our purposes, we treat reclaimable as unmovable.

To try keep pages of the same type together, each free page and
each page block has a migrate type assigned.

But allocator will use fallback types.
And migrate type of a free page and page blocks can change.

When released, page takes migrate type of pageblock it belongs to.



Introduction Usage & Integration Implementation

Interaction of CMA with Linux allocators

memblock

page allocator

the DMA API

CMA



Introduction Usage & Integration Implementation

CMA migrate type

CMA needs guarantees that large number of contiguous pages can
be migrated.

100% guarantee is of course never possible.

CMA introduced a new migrate type.

MIGRATE_CMA

This migrate type has the following properties:

CMA pageblocks never change migrate type.1

Only movable pages can be allocated from CMA pageblocks.

1Other than while CMA is allocating memory from them.



Introduction Usage & Integration Implementation

Preparing CMA region

At the boot time, some of the memory is reserved.

When page allocator initialises, that memory is released with CMA’s
migrate type.

This way, it can be used for movable pages.

Unless the memory is allocated to a device driver.

Each CMA region has a bitmap of “CMA free” pages.

“CMA free” page is one that is not allocated for device driver.
It may still be allocated as a movable page.



Introduction Usage & Integration Implementation

Allocation



Introduction Usage & Integration Implementation

Migration

Pages allocated as movable are set up so that they can be migrated.

Such pages are only references indirectly.
Examples are anonymous process pages and disk cache.

Roughly speaking, migration consists of:
1 allocating a new page,
2 copying contents of the old page to the new page,
3 updating all places where old page was referred, and
4 freeing the old page.

In some cases, content of movable page can simply be discarded.



Introduction Usage & Integration Implementation

Problems

get_user_pages() makes migration impossible.

ext4 does not support migration of journal pages.

Some filesystems are not good on migration.



Introduction Usage & Integration Implementation

Future work

Only swap.

Transcendent memory.

POSIX_FADV_VOLATILE.

http://lwn.net/Articles/340080/
http://lwn.net/Articles/468896/


Q & A

Thank you!

Michał Nazarewicz

mina86@mina86.com

http://mina86.com/cma/

mailto:mina86@mina86.com
http://mina86.com/cma/
http://creativecommons.org/licenses/by-sa/3.0

	Introduction
	Why physically contiguous memory is needed
	Solutions to the problem

	Usage & Integration
	Using CMA from device drivers
	Integration with the architecture
	Private & not so private CMA regions

	Implementation
	Page allocator
	CMA implementation
	CMA problems and future work

	Appendix

