Software Defined Networking, openflow protocol and its controllers

Isaku Yamahata <yamahata@private.email.ne.jp>
<yamahata@valinux.co.jp>
VALinux Systems Japan K.K
Agenda

- SDN and openflow protocol
- Openflow controllers
- Related academic researches
- Openflow controller to network operating system
Software Defined Networking and Openflow protocol
SDN: Software Defined Networking

- http://opennetsummit.org/why.html
 - SDN is a new approach to networking and its key attributes include: separation of data and control planes; a uniform vendor-agnostic interface called OpenFlow between control and data planes; a logically centralized control plane; and slicing and virtualization of the underlying network. The logically centralized control plane is realized using a network operating system that constructs and presents a logical map of the entire network to services or control applications implemented on top of it. With SDN, a researcher or network administrator can introduce a new capability by writing a simple software program that manipulates the logical map of a slice of the network. The rest is taken care of by the network operating system.

 [Paraphrased from the HotSDN ‘12 Solicitaion]

 - Software Defined Networking (SDN) is a refactoring of the relationship between network devices and the software that controls them.
OpenFlow/SDN

OpenFlow/SDN Difference

Network of vertically integrated, closed, proprietary switches

OpenFlow/SDN:
- Separation of control and data plane
- Open interface between control and data plane
- Open interface to the control plane
- Network control and management features in software

From http://opennetsummit.org/why.html
Openflow

Control path (software)
Datapath (hardware)

Ethernet switch

Openflow controller

Openflow protocol (tcp/ssl)

Control path (software)
Datapath (hardware)

Openflow ethernet switch
Flow table and match/action

Openflow controller

Packet in event
When entry miss

Flow table

<table>
<thead>
<tr>
<th>MAC src</th>
<th>MAC dst</th>
<th>IP src</th>
<th>IP dst</th>
<th>TCP src</th>
<th>TCP dst</th>
<th>...</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Packet match

Packet action

Packet

Packet port

Port

Packet output

Port N
OpenFlow controller structure

- OpenFlow protocol parser/serializer
- Event layer
- Switch management
- Application for controller (static/dynamically loadable)
- Controller core

Library:
- Available for most major languages: C, Java, Python, Ruby, Haskel, Ocaml, Erlang, Javascript...
Network Operating System (NOS)

- Distributed system
- Communicate with forwarding planes
- Provides control programs
 - Abstract network view
 - State distribution abstraction
 - Specification abstraction
 - abstract interfaces to network application
 - NOS takes care of distributed details
- Control program
 - Configuration = f(network view)
The “Software-defined Network”

1. Open interface to hardware
2. At least one good operating system
 Extensible, possibly open-source
3. Well-defined open API

Network Operating System

- Simple Packet Forwarding Hardware

Openflow Controllers
NOX

- New NOX
 - Stanford Univ. UC Berkly,
 - GPL v3
 - C++
 - Native thread model
- NOX classic
 - Stanford Univ. Nicira
 - GPL v3
 - Python based on C++ and swig(http://www.swig.org)
 - Its own thread model
 - Especially for python support, threading is limited.
- https://github.com/noxrepo/nox
- http://groups.google.com/group/nox_dev
POX

- Stanford Univ.
- GPL v3
- python
- Pure Python version of Nox
- http://www.noxrepo.org/pox/about-pox/
- https://github.com/noxrepo/pox
- http://groups.google.com/group/pox_dev
Trema

- NEC
- GPL v2
- C and Ruby
- TremaShark: integrated network simulator/controller debugger
- Many apps (TremaApps) and tutorial
 - https://github.com/trema/apps
- http://trema.github.com/trema/
- https://github.com/trema
- https://groups.google.com/group/trema-dev
Beacon

- David Erickson of Stanford Univ.
- GPL v2 license and the Stanford University FOSS License Exception v1.0
- Java with OSGI, OpenflowJ
- Multithreaded
 - They claim that Beacon scales well
- https://openflow.stanford.edu/display/Beacon/Home
- git://gitosis.stanford.edu/beacon.git
Floodlight

- BigSwitch
- Apache 2.0
- Java
 - Python support via Jython
- Forked from Beacon
 - Redesigned to removed OSGI dependency
 - Its own module support
- Actively defining North bound API (REST API)
 - e.g. Static flow pusher
- http://floodlight.openflowhub.org/
- https://github.com/floodlight/floodlight
- http://groups.google.com/a/openflowhub.org/group/floodlight-dev/topics
Maestro

- Rice Univ.
- LGPL v2
- Java
- Multi threaded
 - Using DAG(Directed Acyclic Graph) to exploit parallelism
- http://code.google.com/p/maestro-platform/
- http://maestro-platform.googlecode.com/svn/trunk/
 - subversion
- http://groups.google.com/group/maestro-platform
Ryu

- NTT + VALinux Systems Japan K.K.
- Apache 2.0
- Python
- OpenStack support
- Tunneling/VLAN
- For details: session: June 8th 14:00-

Full disclosure: I am a core developer of Ryu
Node Flow

- Cisco: Gary Berger (personal project?)
- MIT lincense
- Java script (with Node.js + oflib Node)
- http://garyberger.net/?p=537
- https://github.com/gabberger/NodeFFlow
FlowER

- Travelping
 - Closly working with Telcom company?
- BSD-like licence (refer the code for details)
- Erlang
- Used as a port of their products?
- https://github.com/travelping/flower
Nettle

- Yale Univ.
- BSD3
- Haskel
- http://haskell.cs.yale.edu/?page_id=376
Mirage

- BSD
- OCaml
- http://openmirage.org/
- https://github.com/avsm/mirage
Open vSwitch: ovs-controller

- Nicira
- Apatch 2.0 (ovs-controller.c itself)
- C
- Included in Open vSwitch
- simple OpenFlow controller reference implementation
Proprietary Products (Just for completeness)

- Nicira: NVP Network Virtualization Platform
- BigSwitch: Floodlight based?
- NEC: ProgrammableFlow
- Midokura: Midonet
- NTT Data:
- Travelping: FlowER based?

Ask your vendors for details
Related Academic research
Onix

- Teemu Koponen, Martin Casado, Natasha Gude, and Jeremy Stribling, Nicira Networks; Leon Poutievski, Min Zhu, and Rajiv Ramanathan, Google; Yuichiro Iwata, Hiroaki Inoue, and Takayuki Hama, NEC; Scott Shenker, International Computer Science Institute (ICSI) and UC Berkeley

- No codes publicly available

- http://static.usenix.org/event/osdi10/tech/#wed

- Network Operating System

- Network Information Base (NIB)
flowvisor

- Its own license (refer the repo for details)
- Java
- OF virtualization/network slicing
- https://bitbucket.org/onlab/flowvisor
Other researches

- RouteFlow
 - https://sites.google.com/site/routeflow/
- Flowscale
 - Load balancer
 - http://www.openflowhub.org/display/FlowScale/FlowScale+Home
- Frenetic: model checker
 - http://frenetic-lang.org/
- NICE-OF
 - Symbolic Execution with Model checker
Openflow controller to network operating system
Openflow controller to Network OS

- Distributed programming is hard
 - State distribution
- Event changing the state is hard
 - react change on network configuration and change the switch configuration
 - Calculating the switch diff based on network diff is hard
- Configuring network right is hard
 - Verification?
 - Model checker?
- Provide some layer for distributed programming
 - Higher level network view
 - Debugging environment?
 - View network status by single command
 - Network health check: Take network states snapshot, and run verification on it
 - Or runtime check?
 - Distributede database?
 - Switch model
 - tracking switch flows somehow
 - HA, multi controllers
 - Taking over switch
 - Simulator?
Summary

- OSS Openflow controllers are very common
- The next area to investigate is to evolve from openflow controller to network operating system
Thank you

• Questions?