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Linux can be fault-tolerant: 

 Analysis on the Scope of Error 
Propagation 



OS kernel crash 

▪ Computer systems need to be highly available 

▪ Downtime costs $200,000 per hour for Amazon 
[Kembel ’00] 

▪ OSes are crucial for achieving high availability 
of computer systems 

▪ A kernel crash can lead to the entire apps outage 
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Error propagation 

▪ Kernel crashes derive from error propagation 

▪ Error propagation is difficult to avoid 

▪ Difficult to remove all bugs in Linux kernels 
[Palix et al. ASPLOS’11] [Chou et al. SOSP’01] 

▪ Propagated errors are difficult to fix 

▪ Need to inspect if each data is corrupted or not 
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Goal 

▪ Analyze error propagation in Linux 2.6.38 

▪ Corrupt data using fault injection 

▪ Crash the kernel and analyze the data corruption 

▪ Explore the possibility of efficient crash 
recovery in Linux 



The scope of error propagation 

▪ Analyze the scope of error propagation 

▪ Process-local errors 

▪ Errors are confined in a kernel process context 

▪ Kernel-global errors 

▪ Errors propagate to data shared among the kernel 

▪ If an error is process-local, 

▪ The system is expected to keep running correctly 
even after the kernel crashes 



Process-local error 

▪ Error propagation only within the kernel context 
of a process 

▪ e.g., data corruption in a kernel stack 

▪ The other procs are expected to keep running 

▪ Killing a faulty proc removes all the corrupted data 
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Kernel-global error 
▪ Error propagation in data shared among kernel 

contexts 
▪ e.g., data corruption in task_struct or mm_struct 

▪ The other procs might behave incorrectly 
▪ Killing a faulty proc cannot remove all the corrupted 

data 

▪ The corrupted data can produce incorrect outputs 
▪ File systems might be damaged 
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Analyze the scope of error propagation 

▪ Conduct 6738 experiments with Linux 2.6.38 

▪ Inject a fault in the kernel text segment 

▪ Run a workload in 6 benchmarks for each fault  

▪ UnixBench on {ext4, fat, USB}, Netperf, Aplay, Restartd 

▪ Investigate the scope if the kernel crashes 

▪ Investigate where memory is written with KDB 



The fault injector 

▪ Emulate 15 fault types by mutating an instr 

▪ Used for evaluation of previous researches in OS 

▪ Imitate bugs reported in Linux kernels 

▪ [Castro et al. SOSP ’09], [Palix et al. ASPLOS ’11], etc. 

Fault types before after 

init int x = 1; int x; 

irq arch_local_irq_restore() deleted. 

off by one while (x < 10) while (x <= 10) 

bcopy memcpy(ptr, ptr2, 256); memcpy(ptr, ptr2, 512); 

size ptr = kmalloc(256, GFP_KERNEL); ptr = kmalloc(128, GFP_KERNEL); 

free kfree(ptr); deleted. 

null if (ptr == NULL) return; deleted. 

Examples of the Injected Fault 



Result 

▪ 134 kernel crashes are observed 

▪ 98/134 : process-local errors 

▪ 36/134 : kernel-global errors 

▪ Overrun,  corrupt list_head or callback ptr, etc. 

▪ Killing a faulty process removes all the 
corrupted data with 73% probability 

branch inverse ptr 
dst 
src 

init irq 
off by  
one 

size bcopy loop var null total 

process- 
local 

3 4 26 15 10 1 6 1 6 8 3 15 98 

kernel- 
global 

1 3 8 10 1 0 0 1 10 1 1 0 36 

total 4 7 34 25 11 1 6 2 16 9 4 15 134 



Experiment 

▪ Examine if the system can survive kernel 
crashes by killing a faulty process 

▪ Crash the kernel 

▪ Use 134 kernel crashes in the scope analysis 

▪ A faulty process is killed by the kernel oops procedure 

▪ Run a workload in 6 benchmarks for each crash 

▪ In some cases we cannot run the workload 

▪ Examine the kernel reaction against the errors 



Result (1/3): Kernel-global 

▪ Examine 126 kernel reactions 

▪ 32/126: Workloads can keep running 

▪ Workloads use a subsystem unrelated to the error 

▪ 91/126: Workloads stop or do not start 

▪ Due to deadlock, oops again, a required process is 
killed and abort with errors detected 

▪ 3/126: Panic due to failure killing a faulty proc 

▪ Init and interrupt contexts cannot be killed 
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Result (2/3): Process-local 

▪ Examine 463 kernel reactions 

▪ 314/463: Workloads can keep running 

▪ 142/463: Workloads stop or do not start 

▪ Deadlock, a required process is killed 

▪ 7/463: Panic due to failure killing a faulty proc 
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Result (3/3): Summary 

▪ The system can survive the kernel crash by 
killing a process in 579/589 cases 

▪ A faulty proc cannot be killed in 10/589 cases 

▪ Incorrect kernel behavior is not observed 

▪ The kernel is expected to stop before reading the 
corrupted state, even if the errors are kernel-global 
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The kernel can fail-stop 

▪ Kernel-global errors can be unreadable due to 
deadlock 

▪ The mutual execution is done to write shared data 

▪ A context killed in a critical section holds the lock 

▪ Kernel-global errors soon cause kernel crashes 

▪ Corrupted list_head pointers soon cause invalid 
memory access  
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Related work 
▪ A study of Linux behavior under errors [Gu et al. DSN ’03] 

▪ Conduct fault injection experiments 

▪ Show error propagation among subsystems 

▪ A study of bugs in Linux [Palix et al. ASPLOS ’11] 

▪ Use a static analyzer to Linux kernels 

▪ Show the life-time and the distribution of bugs in Linux 

▪ Reboot-based recovery with apps’ state reserved 
 [Depoutovitch et al. EuroSys ’10] 

▪ Switch to the slave kernel when the master kernel crashes 

▪ Take downtime & need to re-design apps 



Conclusion 

▪ OS kernels need to be prevented from crashing 

▪ Error propagation makes crash recovery difficult 

▪ We analyze the scope of erorr propagation in 
Linux 2.6.38 

▪ 98/134 errors are process-local 

▪ The kernel stops before reading kernel-global errors 
in 91/126 cases 

▪ Our analysis indicates Linux can be fault-tolerant 

▪ Killing a faulty process is effective to survive kernel 
crashes 


