
Takeshi Yoshimura, Hiroshi Yamada and Kenji Kono
Keio University

June 6th 2012

Linux can be fault-tolerant:

 Analysis on the Scope of Error
Propagation

OS kernel crash

▪ Computer systems need to be highly available

▪ Downtime costs $200,000 per hour for Amazon
[Kembel ’00]

▪ OSes are crucial for achieving high availability
of computer systems

▪ A kernel crash can lead to the entire apps outage

 Application

OS Kernel

 Application Application

CRASH

Error propagation

▪ Kernel crashes derive from error propagation

▪ Error propagation is difficult to avoid

▪ Difficult to remove all bugs in Linux kernels
[Palix et al. ASPLOS’11] [Chou et al. SOSP’01]

▪ Propagated errors are difficult to fix

▪ Need to inspect if each data is corrupted or not

 Application Application Application

NO ERROR ERROR

BUG
CRASH

kernel

user

Goal

▪ Analyze error propagation in Linux 2.6.38

▪ Corrupt data using fault injection

▪ Crash the kernel and analyze the data corruption

▪ Explore the possibility of efficient crash
recovery in Linux

The scope of error propagation

▪ Analyze the scope of error propagation

▪ Process-local errors

▪ Errors are confined in a kernel process context

▪ Kernel-global errors

▪ Errors propagate to data shared among the kernel

▪ If an error is process-local,

▪ The system is expected to keep running correctly
even after the kernel crashes

Process-local error

▪ Error propagation only within the kernel context
of a process

▪ e.g., data corruption in a kernel stack

▪ The other procs are expected to keep running

▪ Killing a faulty proc removes all the corrupted data

shared kernel
 data

kernel process
context

NO ERROR ERROR

Errors are
removed
by killing
the process

CRASH

Kernel-global error
▪ Error propagation in data shared among kernel

contexts
▪ e.g., data corruption in task_struct or mm_struct

▪ The other procs might behave incorrectly
▪ Killing a faulty proc cannot remove all the corrupted

data

▪ The corrupted data can produce incorrect outputs
▪ File systems might be damaged

shared kernel
 data

kernel process
context

NO ERROR ERROR

CRASH

Some of the errors are
not removed

CRASH

Analyze the scope of error propagation

▪ Conduct 6738 experiments with Linux 2.6.38

▪ Inject a fault in the kernel text segment

▪ Run a workload in 6 benchmarks for each fault

▪ UnixBench on {ext4, fat, USB}, Netperf, Aplay, Restartd

▪ Investigate the scope if the kernel crashes

▪ Investigate where memory is written with KDB

The fault injector

▪ Emulate 15 fault types by mutating an instr

▪ Used for evaluation of previous researches in OS

▪ Imitate bugs reported in Linux kernels

▪ [Castro et al. SOSP ’09], [Palix et al. ASPLOS ’11], etc.

Fault types before after

init int x = 1; int x;

irq arch_local_irq_restore() deleted.

off by one while (x < 10) while (x <= 10)

bcopy memcpy(ptr, ptr2, 256); memcpy(ptr, ptr2, 512);

size ptr = kmalloc(256, GFP_KERNEL); ptr = kmalloc(128, GFP_KERNEL);

free kfree(ptr); deleted.

null if (ptr == NULL) return; deleted.

Examples of the Injected Fault

Result

▪ 134 kernel crashes are observed

▪ 98/134 : process-local errors

▪ 36/134 : kernel-global errors

▪ Overrun, corrupt list_head or callback ptr, etc.

▪ Killing a faulty process removes all the
corrupted data with 73% probability

branch inverse ptr
dst
src

init irq
off by
one

size bcopy loop var null total

process-
local

3 4 26 15 10 1 6 1 6 8 3 15 98

kernel-
global

1 3 8 10 1 0 0 1 10 1 1 0 36

total 4 7 34 25 11 1 6 2 16 9 4 15 134

Experiment

▪ Examine if the system can survive kernel
crashes by killing a faulty process

▪ Crash the kernel

▪ Use 134 kernel crashes in the scope analysis

▪ A faulty process is killed by the kernel oops procedure

▪ Run a workload in 6 benchmarks for each crash

▪ In some cases we cannot run the workload

▪ Examine the kernel reaction against the errors

Result (1/3): Kernel-global

▪ Examine 126 kernel reactions

▪ 32/126: Workloads can keep running

▪ Workloads use a subsystem unrelated to the error

▪ 91/126: Workloads stop or do not start

▪ Due to deadlock, oops again, a required process is
killed and abort with errors detected

▪ 3/126: Panic due to failure killing a faulty proc

▪ Init and interrupt contexts cannot be killed

not manifest
any failures

deadlock oops
no

proc
detect
error

panic total

kernel-global 32 59 26 3 3 3 126

Result (2/3): Process-local

▪ Examine 463 kernel reactions

▪ 314/463: Workloads can keep running

▪ 142/463: Workloads stop or do not start

▪ Deadlock, a required process is killed

▪ 7/463: Panic due to failure killing a faulty proc

not manifest
any failures

deadlock oops
no

proc
detect
error

panic total

process-local 314 132 0 10 0 7 463

Result (3/3): Summary

▪ The system can survive the kernel crash by
killing a process in 579/589 cases

▪ A faulty proc cannot be killed in 10/589 cases

▪ Incorrect kernel behavior is not observed

▪ The kernel is expected to stop before reading the
corrupted state, even if the errors are kernel-global

 not manifest
any failures

deadlock oops
no

proc
detect
error

panic total

kernel-global 32 59 26 3 3 3 126

process-local 314 132 0 10 0 7 463

total 346 191 26 13 3 10 589

The kernel can fail-stop

▪ Kernel-global errors can be unreadable due to
deadlock

▪ The mutual execution is done to write shared data

▪ A context killed in a critical section holds the lock

▪ Kernel-global errors soon cause kernel crashes

▪ Corrupted list_head pointers soon cause invalid
memory access

shared kernel
 data

kernel process
context

NO ERROR ERROR

CRASH DEAD
LOCK

Related work
▪ A study of Linux behavior under errors [Gu et al. DSN ’03]

▪ Conduct fault injection experiments

▪ Show error propagation among subsystems

▪ A study of bugs in Linux [Palix et al. ASPLOS ’11]

▪ Use a static analyzer to Linux kernels

▪ Show the life-time and the distribution of bugs in Linux

▪ Reboot-based recovery with apps’ state reserved
 [Depoutovitch et al. EuroSys ’10]

▪ Switch to the slave kernel when the master kernel crashes

▪ Take downtime & need to re-design apps

Conclusion

▪ OS kernels need to be prevented from crashing

▪ Error propagation makes crash recovery difficult

▪ We analyze the scope of erorr propagation in
Linux 2.6.38

▪ 98/134 errors are process-local

▪ The kernel stops before reading kernel-global errors
in 91/126 cases

▪ Our analysis indicates Linux can be fault-tolerant

▪ Killing a faulty process is effective to survive kernel
crashes

