
Ubuntu
at

Google
Thomas Bushnell, BSG

Google, Inc.



Challenging user population

● Tens of thousands of employees including
○ graphic designers
○ managers
○ software engineers
○ systems engineers
○ translators
○ ...

● Including
○ People who wrote the original Unix
○ People who don't know what Unix is
○ Some of the best programmers in the world
○ Some who know next to nothing about the internals 

of a computer system



Challenging demands

● Pushing workstations to their limits

● Extremely large codebases

● Very rapidly moving development cycles

● Unusual cost/benefit ratios
○ What's the cost of a reboot?
○ Custody of users' data
○ New hardware vs. cost of supporting old hardware



What is Goobuntu?

● A light skin over standard Ubuntu like most 
LISA cases:

○ We don't customize UI and the like

○ Centralized administration with puppet and apt

○ LDAP-based user database

○ Automated release testing



Goobuntu: Unusual demands

● Security requirements
○ banned packages
○ special in-house user authentication 
○ pushing the state of the art in network authentication
○ extremely high-profile security target



Goobuntu: Unusual demands

● users develop special in-house build 
systems for large codebases and shared 
development

● internal apt repository framework
● very high cost for mistakes
● diverse developers:

○ large scale perforce code bases using custom build 
systems

○ android and chrome using git and free software 
development tools

○ every corner case of UI desires and habits



Why does Goobuntu use LTS?

Upgrading is expensive:
● hundreds of locally built packages
● even small changes are expensive
● destabilizing changes without obvious 

benefit
● new UI is not as exciting for our users
● very cautious adoption and phase-in process

But we lose...
● Newer versions of important stuff (e.g. KDE)
● Participation in most Ubuntu release cycles



Canaries
● Tester pools are not sufficient
● Automated push of changes to small 

numbers of users
● Detection of failures with very speedy 

rollback

Results:
● more willingness to take beneficial risks
● less harm from buggy pushes
● less user disruption and more functional 

changes: profit!



Automate yourself out of a job

● Humans do not exist to turn cranks

● Do not page a human to do a task which the 
system could have done: automated fault 
correction

● The ideal number of pages is not zero

● Reducing human involvement is richly 
rewarded



Hope is Not a Strategy

● Computer systems fail



Hope is Not a Strategy

● Computer systems fail
● That is, all computer systems fail



Hope is Not a Strategy

● Computer systems fail
● That is, all computer systems fail
● Your computer systems? They fail.



Hope is Not a Strategy

● Computer systems fail
● That is, all computer systems fail.
● Your computer systems? They fail.

Design for failure:
● System failure is not an exceptional, but an 

expected event
● Plan for failure of systems to be capable of 

being handled on a non-emergent basis
● Active monitoring is absolutely critical



Finding cause, not placing blame
● Programmers, like systems, will make 

mistakes
● All programmers make mistakes.
● Your programmers? They make mistakes.



Finding cause, not placing blame
● Programmers, like systems, will make 

mistakes
● Open culture around post-mortems

○ Anyone can request a post-mortems
○ What happened, and when
○ What safeguards would have helped?
○ What slowed response?
○ What would have made the people or the systems 

less prone to fail?
● No problem should happen the same way 

twice
● Human error manifests the same as system 

error most of the time



Thanks and appreciation

● Support teams at Canonical

● Development teams at Canonical

● Upstream developers

● Debian developers, Ubuntu maintainers

● Fellow Googlers



Any questions?


