Ubuntu
at
Google

Thomas Bushnell, BSG
Google, Inc.



Challenging user population

e Tens of thousands of employees including

O

O O O O O

graphic designers
managers
software engineers
systems engineers
translators

. InCI.LIJding

O O O O

People who wrote the original Unix

People who don't know what Unix is

Some of the best programmers in the world

Some who know next to nothing about the internals
of a computer system



Challenging demands

Pushing workstations to their limits
Extremely large codebases
Very rapidly moving development cycles

Unusual cost/benefit ratios

O What's the cost of a reboot?

O Custody of users' data

O New hardware vs. cost of supporting old hardware



What is Goobuntu?

e A light skin over standard Ubuntu like most
LISA cases:

o We don't customize Ul and the like
o Centralized administration with puppet and apt
o LDAP-based user database

o Automated release testing



Goobuntu: Unusual demands

® Security requirements
O banned packages
O special in-house user authentication
O pushing the state of the art in network authentication
O extremely high-profile security target



Goobuntu: Unusual demands

e users develop special in-house build
systems for large codebases and shared
development

e internal apt repository framework

very high cost for mistakes

e diverse developers:

O large scale perforce code bases using custom build
systems

O android and chrome using git and free software
development tools

O every corner case of Ul desires and habits



Why does Goobuntu use LTS?

Upgrading is expensive:

hundreds of locally built packages

even small changes are expensive
destabilizing changes without obvious
benefit

new Ul is not as exciting for our users

very cautious adoption and phase-in process

But we lose...

Newer versions of important stuff (e.g. KDE)
Participation in most Ubuntu release cycles



Canaries

e Tester pools are not sufficient

e Automated push of changes to small
numbers of users

e Detection of failures with very speedy
rollback

Results:

e more willingness to take beneficial risks

e |ess harm from buggy pushes

e |ess user disruption and more functional
changes: profit!



Automate yourself out of a job

Humans do not exist to turn cranks

Do not page a human to do a task which the
system could have done: automated fault
correction

The ideal number of pages is not zero

Reducing human involvement is richly
rewarded



Hope is Not a Strategy

e Computer systems fail



Hope is Not a Strategy

e Computer systems fail
e Thatis, all computer systems fail



Hope is Not a Strategy

e Computer systems fail
e Thatis, all computer systems fail
e Your computer systems”? They fall.



Hope is Not a Strategy

e Computer systems fail
e Thatis, all computer systems fail.
e Your computer systems”? They fall.

Design for failure:

e System failure is not an exceptional, but an
expected event

e Plan for failure of systems to be capable of
being handled on a non-emergent basis

e Active monitoring is absolutely critical



Finding cause, not placing blame

e Programmers, like systems, will make

mistakes
e All programmers make mistakes.

e Your programmers? They make mistakes.



Finding cause, not placing blame

Programmers, like systems, will make
mistakes

Open culture around post-mortems

o Anyone can request a post-mortems

What happened, and when

What safeguards would have helped?

What slowed response?

What would have made the people or the systems
less prone to fail?

No problem should happen the same way
twice

Human error manifests the same as system
error most of the time

O
O
O
O



Thanks and appreciation

Support teams at Canonical
Development teams at Canonical
Upstream developers

Debian developers, Ubuntu maintainers

Fellow Googlers



Any questions?



