
Tomoki Sekiyama
Linux Technology Center
Yokohama Research Lab.
Hitachi, Ltd.

Improvement of Real-time
Performance of KVM

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved.

1. Overview of realtime virtualization

2. Improvement of KVM realtime performance

3. Performance evaluation

4. Current status of development

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 2

Use case of virtualization in RT systems

• Control systems for factory automation / social infrastructure
– Require low latencies and deadline constraints

– Not CPU intensive; typically use single CPU core only

→ To utilize many cores by consolidating multiple systems

– Used for very long time (10+ years)

→ To preserve old software environment in new hardware

• Embedded systems / Appliances
– Provide realtime performance AND user-friendly interface

– Gradually port applications from legacy RTOS to Linux

→ To run RTOS guest and Linux in parallel

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 3

Use case of virtualization in RT systems

• Enterprise systems (e.g. Automated trading systems)
– To preserve old software environment in new hardware

– To deploy applications easily into cloud DCs

• HPC (not RT system, but has similar requirements)

– Low latency features are required to reduce overhead by network
communication among nodes

– Virtualization technology is used in public cloud HPC environments
 (e.g. Amazon EC2) to realize easy deployment and easy management
of computation nodes

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 4

Requirements for realtime virtualization

• Low latency
– Respond to external events quickly

• Bare-metal performance
– Not to slow down applications

• Preserve (at least soft) realtime quality of the guest OS
– Blocking the guest will loose realtime performance

→ Temporal interfere from host tasks must be avoided

• Sometimes modification of the guest OS should be avoided
– Some legacy GPOS / RTOS is difficult to modify

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 5

Why using KVM?

• non-KVM solutions
– Some RTOS supports Linux guests

– Tiny hypervisors just for partitioning

• KVM has …
– Advanced virtualization features

• Sharing and overcommit resources

• Support virtualization hardware (EPT, x2APIC, VT-d, ...)

• Well-defined management / debug interfaces (e.g. libvirt)

– Large community

• Upstreamed in Linux kernel

• Well tested in various environment

• Rapid innovation

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 6

Issues in realtime virtualization

• mlock(2), SCHED_RR and exclusive cpuset for a guest can
improve realtime performance

• Still some issues remain:
– Interfere from host’s kernel thread

– Temporal overhead by interrupt forwarding

• Overheads in interrupt path

• Interrupt from passed-through PCI devices also takes similar path

• Especially problematic if interrupted frequently (10Gb NIC, etc.)

– The other issues (not focused in this presentation)

• I/O emulation in vCPU thread, locks in hypervisor …

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 7

set

APIC

timer

emulate

APIC

access

timer

handler

timer

handler

vIRQ

injection

emulate

APIC

access

VM Exit
VM Enter

VM Exit

VM Enter

EOI

VM Exit
VM Enter

Host

Guest

timer
interrupt

Example: timer interrupt

1. Overview of realtime virtualization

2. Improvement of KVM realtime performance

3. Performance evaluation

4. Current status of development

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 8

How to improve RT performance

• CPU isolation
– Partitioning CPUs for realtime guest

 → Avoid interference from kernel threads etc.

• Direct interrupt delivery (requires CPU isolation)

– Eliminate the overhead of interrupt forwarding

– for passed-through PCI devices & local APIC timer

 → Improve latencies and reduce host CPU usage

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 9

set

APIC

timer

emulate

APIC

access

IRQ

handler

IRQ

handler

vIRQ

injection

emulate

APIC

access

VM Exit
VM Enter

VM Exit

VM Enter

EOI

VM Exit
VM Enter

Host

Guest

timer
interrupt

Direct interrupt delivery Direct EOI Direct Local APIC
access

(for timer)

Example: timer interrupt

Core

#1

Core

#2

Core

#3

Core

#4

host kernel

VM VM
host

processes

minimum hypervisor

CPU isolation

• Dedicate some of CPUs to the guest
– Make the CPUs offline from Linux host

• Only provides minimal functions to run vCPU

• Stop host kernel threads on the CPU

– Execute guest vCPU thread on the CPU

• Benefit of CPU isolation
– Avoid Interference from host kernel tasks

– Assure Bare-metal CPU performance

• Not interrupted by other guests or processes

– Enable guest OS to occupy some CPU facilities (local APIC, etc)

• This is needed for direct IRQ delivery (described in next slides)

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 10

Core

#1

Core

#2

Core

#3

Core

#4

host kernel

VM VM
host

processes

minimum hypervisor

Interface to CPU islation

1. Offline CPUs to be dedicated

 # echo 0 > /sys/devices/system/cpu/cpuX/online

2. (in qemu) Use ioctl(2) to set the dedicated CPU id for each vCPU

 ioctl(vcpu[i], KVM_SET_SLAVE_CPU, slave_cpu_id[i]);

 → The specified CPU is booted with minimal function to execute VM

 (Direct interrupt delivery features are also activated)

3. (in qemu) Start vCPU by KVM_RUN

 ioctl(vcpu[i], KVM_RUN, 0);

 → vcpu thread is suspended while vcpu is running on the dedicated CPU
 (resumed on VM Exit that cannot handled by KVM)

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 11

Direct interrupt delivery

• Core idea
– Exploit CPU (Intel VT-x and AMD SVM) feature to deliver interrupts

directly to guests

• Disable interception of external interrupt

• Overhead by VM exit/enter on interrupts can be avoided

Intel VT-x case:

– External interrupt exiting:

• if 1, external interrupts cause VM exits

• if 0, they are delivered through the guest IDT

– NMI exiting:

• Similar setting for NMIs

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 12

0 3 31

VMCS / Pin-Based VM-
Execution Controls

… …

External interrupt exiting NMI exiting

Direct interrupt delivery

• Issue #1
– Can not distinguish whether an interrupt is for host or guest

• Can not specify whether each vector causes VM Exit or not

• While it is running , all interrupts are delivered to the guest

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 13

Core

#1

Core

#2

Core

#3

Core

#4

host kernel VM VM

NIC
VF2 VF1

SR-IOV

???

Direct interrupt delivery

• Issue #1
– Can not distinguish whether an interrupt is for host or guest

• Can not specify whether each vector causes VM Exit or not

• While it is running , all interrupts are delivered to the guest

• Solution
– CPU isolation & IRQ affinity

• Set IRQ affinity to route interrupts
to appropriate CPUs

– Host devices → host cores

– Passed-through devices
 → dedicated core

– Currently only MSI/MSI-X is supported

– Shared ISA IRQs require forwarding by host

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 14

Core

#1

Core

#2

Core

#3

Core

#4

host kernel VM VM

NIC
VF2 VF1

SR-IOV

IRQ affinity

Direct interrupt delivery

• Issue #2
– Can not send normal IPI for host to dedicated CPUs (delivered to guests!)

• Needed for …

– injection of emulated interrupts (virtual IRQ)

– TLB shoot down on the host’s memory protection change, etc.

• Solution
– Use NMI instead of normal IPI

• Whether VM Exit happens on NMI
can be independently set

– NMI is non-maskable: handler is called
even in irq disabled context

• NMI is used just to cause VM exit

• After VM exit, check requests from other CPUs and handle them

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 15

Core

#1

Core

#2

Core

#3

Core

#4

host kernel

VM VM
VM Exit

NMI
Handle request

qemu

Direct interrupt delivery

• Issue #3
– The host and the guest use different vectors for

the same devices

• Normal KVM host converts the host’s vector
 to the guest’s vector

• For Direct IRQ, PCI devices must be
reconfigured with the guest’s vector

• Confused if host receives the guest vector

– This happens while the VM is exiting
 (during I/O emulation, etc.)

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 16

Core

#1

Core

#2

Core

#3

Core

#4

host kernel VM VM

NIC
VF2 VF1

SR-IOV

VF1
vector = 96

VF1
vector = 42

Reconfig to 42 42??

96
42

Direct interrupt delivery

• Issue #3
– The host and the guest use different vectors for

the same devices

• Normal KVM host converts the host’s vector
 to the guest’s vector

• For Direct IRQ, PCI devices must be
reconfigured with the guest’s vector

• Confused if host receives the guest vector

– This happens while the VM is exiting
 (during I/O emulation, etc.)

• Solution
– Register the guest’s vector also to the host’s vector→irq mapping

on the dedicated CPU

• If the host receives the guest’s vector, inject it to guest as vIRQ

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 17

Core

#1

Core

#2

Core

#3

Core

#4

host kernel VM VM

NIC
VF2 VF1

SR-IOV

VF1
vector = 96

VF1
vector = 42

Reconfig to 42 42?? 4296

42

Direct interrupt delivery flow

• Normal KVM interrupt delivery

• Direct interrupt delivery

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 18

IRQ

handler

IRQ

handler

vIRQ

injection

emulate

APIC

access

VM Exit

VM Enter

EOI

VM Exit
VM Enter

Host

Guest

external interrupt

IRQ

handler

emulate

APIC

access

EOI

VM Exit
VM Enter

Host

Guest

external interrupt

Direct EOI

• In hardware with x2APIC, EOI (End Of Interrupt) for passed-
through devices can be done directly from the guest

– x2APIC provides access to APIC via MSRs (Model Specific Registers)

– VT-x has bitmask to specify which MSR is exposed to the guest

• Direct EOI must not be applied to virtual IRQ
– EOI for virtual IRQs must be sent to virtual APIC

→ On virtual IRQ injection, disable direct EOI
→ Re-enable after every virtual IRQ is handled

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 19

Direct EOI flow

• Direct interrupt delivery + Direct EOI flow

• Virtual interrupt delivery flow

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 20

IRQ

handler

emulate

APIC

access

VM Exit

VM Enter

EOI

VM Exit
VM Enter

Host

Guest

qemu device

emulation
vIRQ

injection

NMI

IRQ

handler

direct

EOI

Host

Guest

external interrupt

disable direct EOI re-enable direct EOI

Direct Local APIC Timer access

• Host kernel timer which uses Local APIC Timer (hrtimer etc.)
must be disabled on the dedicated core
– Timer interrupt is delivered to the guest directly!

• Local APIC Timer also can be exposed to the guest
– Require x2APIC to access APIC via MSRs

– Exposed timer related APIC registers:

• TMICT (Timer initial count) : write to start timer

• TMCCT (Timer current count): read current timer value

• TDCR (divide control register): read/write frequency settings

– Non-exposed timer related registers:

• LVTT (local vector table for timer): specify vector, timer mode etc.

– vector settings must be confirmed by hypervisor

• MSR: IA32_TSC_DEADLINE

– TSC value in the guest has offset, so needs conversion

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 21

Direct Local APIC Timer access flow

• Normal KVM - Virtual Local APIC Timer flow:

• with Direct Local APIC Timer Access:

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 22

set

APIC

timer

emulate

APIC

access

IRQ

handler

IRQ

handler

vIRQ

injection

emulate

APIC

access

VM Exit
VM Enter

VM Exit

VM Enter

EOI

VM Exit
VM Enter

Host

Guest

timer
interrupt

set

APIC

timer

IRQ

handler

direct

EOI

Host

Guest

timer
interrupt

1. Overview of realtime virtualization

2. Improvement of KVM realtime performance

3. Performance evaluation

4. Current status of development

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 23

Performance evaluation

• Experimental setup
– Machine: Core i7 3770 (Ivy Bridge), 4core, w/o HyperThreading

 16GB Memory

– Host: Linux-3.5.0-rc6
 + direct IRQ/EOI/LAPIC patch

– Guest: Linux-3.4.0 or Linux-3.4.4-rt14
 1 vCPU or 1 dedicated core

– PCI: Intel 10Gb NIC with SR-IOV
 1 VF is Passed-through to the guest

• cyclictest: a benchmark to measure realtime performance
– Measure how quickly a task is woken up by timer

– command line: “cyclictest –a 0 –m –q –p 99 –n –l 300000 –h 30000”
 Interval = 1ms, 300000 loop (5 minutes*) * too short to evaluate max time

– background workload: idle / iperf (I/O load)

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 24

Core

#1

Core

#2

Core

#3

Core

#4

host kernel
VM

10Gb NIC VF

pass-
through

qemu

1

10

100

1000

10000

100000

1000000
0

1
6

32 48 6
4

80 9
6

1
1

2
1

2
8

14
4

16
0

17
6

19
2

2
0

8
2

2
4

2
4

0
2

5
6

27
2

28
8

3
0

4
3

2
0

33
6

3
5

2
3

6
8

3
8

4
40

0
41

6
43

2
44

8
4

6
4

4
8

0
49

6
51

2
52

8
5

4
4

5
6

0
5

7
6

59
2

bare-metal

3.4.4-rt14 on KVM+DirectIRQ

3.4.0+ on KVM+DirectIRQ

3.4.4-rt14 on KVM

3.4.0+ on KVM

cyclictest results

• cyclictest results
– Guest: idle / Host: under CPU workload (infinite loop)

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 25

Hypervisor

Guest

linux-3.4.0 linux-3.4.4-rt14

min avg * max min avg * max

bare-metal 1 1 376

KVM+DirectIRQ 2 2 15 1 2 14

KVM 7 13 558 6 11 152

cyclictest latency (μs)

1

2

5

1
0

(Histogram with logarithimic scale)

* test is too short to
 evaluate max latency

1

10

100

1000

10000

100000

1000000
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0
1

1
0

1
2

0
1

3
0

1
4

0
1

5
0

1
6

0
1

7
0

1
8

0
1

9
0

2
0

0
2

1
0

2
2

0
2

3
0

2
4

0
2

5
0

2
6

0
2

7
0

2
8

0
2

9
0

3
0

0
3

1
0

3
2

0
3

3
0

3
4

0
3

5
0

3
6

0
3

7
0

3
8

0
3

9
0

4
0

0
4

1
0

4
2

0
4

3
0

4
4

0
4

5
0

4
6

0
4

7
0

4
8

0
4

9
0

5
0

0
5

1
0

5
2

0
5

3
0

5
4

0
5

5
0

5
6

0
5

7
0

5
8

0
5

9
0

6
0

0
6

1
0

6
2

0
6

3
0

6
4

0
6

5
0

6
6

0
6

7
0

6
8

0
6

9
0

7
0

0
7

1
0

7
2

0
7

3
0

7
4

0
7

5
0

7
6

0
7

7
0

7
8

0
7

9
0

8
0

0
8

1
0

8
2

0
8

3
0

8
4

0
8

5
0

8
6

0

bare-metal

3.4.0+ on KVM+DirectIRQ

3.4.0+ on KVM

cyclictest results

• cyclictest results
– Guest: under network I/O workload (iperf)

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 26

Hypervisor

Guest

linux-3.4.0

min avg * max

bare-metal 3 6 324

KVM+DirectIRQ 2 14 157

KVM 6 35 855

cyclictest latency (μs)

1

2

5

(Histogram with logarithimic scale)

* test is too short to
 evaluate max latency

Network I/O Performance

• Evaluated with traffic between physical NIC ↔ SR-IOV VF

• Throughput (iperf results)

• Latency (ping results)

• Host CPU Usage:
– 5 - 10% reduced -- because of no need to forward interrupts

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 27

0 2 4 6 8 10 12

KVM+directIRQ

KVM

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

KVM+directIRQ

KVM

30% faster

28% better

(Gbps)

(ms)

1. Overview of realtime virtualization

2. Improvement of KVM realtime performance

3. Performance evaluation

4. Current status of development

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 28

Current status

• Patch submission status
– RFC v1 (June 28):

CPU isolation

direct interrupt delivery

× no direct EOI

× no LAPIC timer

× no SMP guest

× no AMD SVM support

× no in-kernel PIT emulation

× Linux guest only

× has an issue in page fault
handling

× not tested well …

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 29

– RFC v2 (soon):

CPU isolation

direct interrupt delivery

direct EOI

direct LAPIC timer

SMP guest

× no AMD SVM support

× no in-kernel PIT emulation

× Linux guest only

× has an issue in page fault
handling

× not tested well …

How to test

1. Apply patch to Linux/KVM and qemu

2. Disable PCI devices to pass-through

 # echo XXXX:XXXX > /sys/bus/pci/drivers/pci-stub/new_id

 # echo 05:00.0 > /sys/bus/pci/drivers/XXXX/unbind

 # echo 05:00.0 > /sys/bus/pci/drivers/pci-stub/bind

3. Offline CPUs to be dedicated

 # echo 0 > /sys/devices/system/cpu/cpu3/online

4. Execute guest VM
– Currently “–no-kvm-pit” option is required

– VGA is very slow; not recommended

 # qemu-kvm.patched -m 1024 –cpu qemu64,+x2apic ＼

 -enable-kvm ＼

 -no-kvm-pit ＼

 -serial pty ＼

 -nographic ＼

 -drive file=kvm/test.img,if=virtio ＼

 -device pci-assign,host=05:00.0

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 30

Future Plan

– Reduce restrictions

• in-kernel chip emulation (e.g. PIT)

• AMD SVM support

• support Non-Linux guest like RTOS

– Implement direct interrupt (IPI) delivery for virtio

• Can improve realtime performance with shared devices

• Migration support?

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 31

Thank you!

Questions?

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 32

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 33

Copyrights and Trademarks Notices

• Linux is a registered trademark of Linus Torvalds.

• All other trademarks and copyrights are the property of their
respective owners.

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 34

