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Use case of virtualization in RT systems 

• Control systems for factory automation / social infrastructure 
– Require low latencies and deadline constraints 

– Not CPU intensive;  typically use single CPU core only 

→ To utilize many cores by consolidating multiple systems 

– Used for very long time (10+ years) 

→ To preserve old software environment in new hardware 

 

• Embedded systems / Appliances 
– Provide realtime performance AND user-friendly interface 

– Gradually port applications from legacy RTOS to Linux  

→ To run RTOS guest and Linux in parallel 
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Use case of virtualization in RT systems 

• Enterprise systems (e.g. Automated trading systems) 
– To preserve old software environment in new hardware 

– To deploy applications easily into cloud DCs 

 

• HPC (not RT system, but has similar requirements) 

– Low latency features are required to reduce overhead by network 
communication among nodes  

– Virtualization technology is used in public cloud HPC environments 
 (e.g. Amazon EC2) to realize easy deployment and easy management 
of computation nodes 
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Requirements for realtime virtualization 

• Low latency 
– Respond to external events quickly 

 

• Bare-metal performance 
– Not to slow down applications 

 

• Preserve (at least soft) realtime quality of the guest OS 
– Blocking the guest will loose realtime performance  

→ Temporal interfere from host tasks must be avoided 
 

• Sometimes modification of the guest OS should be avoided 
– Some legacy GPOS / RTOS is difficult to modify 
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Why using KVM? 

• non-KVM solutions 
– Some RTOS supports Linux guests 

– Tiny hypervisors just for partitioning 

 

• KVM has … 
– Advanced virtualization features 

• Sharing and overcommit resources 

• Support virtualization hardware (EPT, x2APIC, VT-d, ...) 

• Well-defined management / debug interfaces (e.g. libvirt) 

– Large community 

• Upstreamed in Linux kernel 

• Well tested in various environment 

• Rapid innovation 

Copyright (c) 2012 Hitachi Ltd., Yokohama Research Lab. All rights reserved. 6 



Issues in realtime virtualization 

• mlock(2), SCHED_RR and exclusive cpuset for a guest can 
improve realtime performance 

• Still some issues remain: 
– Interfere from host’s kernel thread 

– Temporal overhead by interrupt forwarding 

• Overheads in interrupt path 

 

 

 

 

 

 

• Interrupt from passed-through PCI devices also takes similar path 

• Especially problematic if interrupted frequently (10Gb NIC, etc.) 

– The other issues (not focused in this presentation) 

• I/O emulation in vCPU thread, locks in hypervisor … 
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How to improve RT performance 

• CPU isolation 
– Partitioning CPUs for realtime guest 

 → Avoid interference from kernel threads etc. 

• Direct interrupt delivery   (requires CPU isolation) 

– Eliminate the overhead of interrupt forwarding 

– for passed-through PCI devices & local APIC timer 

 → Improve latencies and reduce host CPU usage 
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CPU isolation 

• Dedicate some of CPUs to the guest 
– Make the CPUs offline from Linux host 

• Only provides minimal functions to run vCPU 

• Stop host kernel threads on the CPU 

– Execute guest vCPU thread on the CPU 

 

• Benefit of CPU isolation 
– Avoid Interference from host kernel tasks 

– Assure Bare-metal CPU performance 

• Not interrupted by other guests or processes 

– Enable guest OS to occupy some CPU facilities (local APIC, etc) 

• This is needed for direct IRQ delivery (described in next slides) 
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Interface to CPU islation 

1. Offline CPUs to be dedicated 
 

  # echo 0 > /sys/devices/system/cpu/cpuX/online 

 

 

2. (in qemu) Use ioctl(2) to set the dedicated CPU id for each vCPU 
 

   ioctl(vcpu[i], KVM_SET_SLAVE_CPU, slave_cpu_id[i]); 

 

       → The specified CPU is booted with minimal function to execute VM 

            (Direct interrupt delivery features are also activated) 
 

3. (in qemu) Start vCPU by KVM_RUN 
 

   ioctl(vcpu[i], KVM_RUN, 0);  
 

       → vcpu thread is suspended while vcpu is running on the dedicated CPU 
            (resumed on VM Exit that cannot handled by KVM) 
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Direct interrupt delivery 

• Core idea 
– Exploit CPU (Intel VT-x and AMD SVM) feature to deliver interrupts 

directly to guests 

• Disable interception of external interrupt  

• Overhead by VM exit/enter on interrupts can be avoided 

 

Intel VT-x case: 

 

 

 

 

– External interrupt exiting: 

• if 1, external interrupts cause VM exits 

• if 0, they are delivered through the guest IDT 

– NMI exiting:  

• Similar setting for NMIs 
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Direct interrupt delivery 

• Issue #1 
– Can not distinguish whether an interrupt is for host or guest 

• Can not specify whether each vector causes VM Exit or not 

• While it is running , all interrupts are delivered to the guest 
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Direct interrupt delivery 

• Issue #1 
– Can not distinguish whether an interrupt is for host or guest 

• Can not specify whether each vector causes VM Exit or not 

• While it is running , all interrupts are delivered to the guest 

 

• Solution 
– CPU isolation & IRQ affinity 

• Set IRQ affinity to route interrupts 
to appropriate CPUs 

– Host devices    → host cores 

– Passed-through devices 
                           → dedicated core 

– Currently only MSI/MSI-X is supported 

– Shared ISA IRQs require forwarding by host 
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Direct interrupt delivery 

• Issue #2 
– Can not send normal IPI for host to dedicated CPUs (delivered to guests!) 

• Needed for … 

– injection of emulated interrupts (virtual IRQ) 

– TLB shoot down on the host’s memory protection change,  etc. 

 

• Solution 
– Use NMI instead of normal IPI 

• Whether VM Exit happens on NMI 
can be independently set 

– NMI is non-maskable: handler is called 
even in irq disabled context 

• NMI is used just to cause VM exit 

• After VM exit, check requests from other CPUs and handle them 
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Direct interrupt delivery 

• Issue #3 
– The host and the guest use different vectors for 

the same devices 

• Normal KVM host converts the host’s vector 
 to the guest’s vector 

• For Direct IRQ, PCI devices must be 
reconfigured with the guest’s vector 

• Confused if host receives the guest vector 

– This happens while the VM is exiting 
 (during I/O emulation, etc.) 
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Direct interrupt delivery 

• Issue #3 
– The host and the guest use different vectors for 

the same devices 

• Normal KVM host converts the host’s vector 
 to the guest’s vector 

• For Direct IRQ, PCI devices must be 
reconfigured with the guest’s vector 

• Confused if host receives the guest vector 

– This happens while the VM is exiting 
 (during I/O emulation, etc.) 

• Solution 
– Register the guest’s vector also to the host’s vector→irq mapping 

on the dedicated CPU 

• If the host receives the guest’s vector, inject it to guest as vIRQ 
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Direct interrupt delivery flow 

• Normal KVM interrupt delivery 
 

 

 

 

 

 

 

• Direct interrupt delivery 
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Direct EOI 

• In hardware with x2APIC, EOI (End Of Interrupt) for passed-
through devices can be done directly from the guest 

 

– x2APIC provides access to APIC via MSRs (Model Specific Registers) 

– VT-x has bitmask to specify which MSR is exposed to the guest 

 

• Direct EOI must not be applied to virtual IRQ 
–  EOI for virtual IRQs must be sent to virtual APIC 

→ On virtual IRQ injection, disable direct EOI 
→ Re-enable after every virtual IRQ is handled 
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Direct EOI flow 

• Direct interrupt delivery + Direct EOI flow 
 

 

 

 

 

 

• Virtual interrupt delivery flow 
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Direct Local APIC Timer access 

• Host kernel timer which uses Local APIC Timer (hrtimer etc.) 
must be disabled on the dedicated core 
– Timer interrupt is delivered to the guest directly! 

• Local APIC Timer also can be exposed to the guest 
– Require x2APIC to access APIC via MSRs 

– Exposed timer related APIC registers: 

• TMICT  (Timer initial count) :  write to start timer 

• TMCCT (Timer current count):  read current timer value 

• TDCR    (divide control register): read/write frequency settings 

– Non-exposed timer related registers: 

• LVTT  (local vector table for timer): specify vector, timer mode etc. 

– vector settings must be confirmed by hypervisor 

• MSR: IA32_TSC_DEADLINE 

– TSC value in the guest has offset, so needs conversion 
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Direct Local APIC Timer access flow 

• Normal KVM - Virtual Local APIC Timer flow: 
 

 

 

 

 

 

 

• with Direct Local APIC Timer Access: 
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Performance evaluation 

• Experimental setup 
– Machine:  Core i7 3770 (Ivy Bridge),  4core, w/o HyperThreading 

 16GB Memory 

– Host:    Linux-3.5.0-rc6 
              + direct IRQ/EOI/LAPIC patch 

– Guest: Linux-3.4.0   or  Linux-3.4.4-rt14  
           1 vCPU  or   1 dedicated core 

– PCI:     Intel 10Gb NIC with SR-IOV 
            1 VF is Passed-through to the guest 

 

• cyclictest: a benchmark to measure realtime performance 
– Measure how quickly a task is woken up by timer 

– command line: “cyclictest –a 0 –m –q –p 99 –n –l 300000 –h 30000” 
   Interval = 1ms, 300000 loop (5 minutes*)     * too short to evaluate max time 

– background workload:  idle / iperf (I/O load) 
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• cyclictest results 
– Guest: idle / Host: under CPU workload (infinite loop) 
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Hypervisor 
  

  

Guest 

linux-3.4.0 linux-3.4.4-rt14 

min avg * max min avg * max 

bare-metal 1 1 376       

KVM+DirectIRQ 2 2 15 1 2 14 
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cyclictest results 

• cyclictest results 
– Guest: under network I/O workload (iperf) 
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Hypervisor 
  

  

Guest 

linux-3.4.0 

min avg * max 

bare-metal 3 6 324 

KVM+DirectIRQ 2 14 157 

KVM 6 35 855 
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Network I/O Performance 

• Evaluated with traffic between physical NIC ↔ SR-IOV VF 

• Throughput  ( iperf results ) 

 

 

 

 

• Latency  ( ping results ) 

 

 

 

 

• Host CPU Usage: 
– 5 - 10% reduced  --  because of no need to forward interrupts 
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Current status 

• Patch submission status 
– RFC v1 (June 28): 

CPU isolation 

direct interrupt delivery 

× no direct EOI 

× no LAPIC timer 

× no SMP guest 

× no AMD SVM support 

× no in-kernel PIT emulation 

× Linux guest only 

× has an issue in page fault 
handling 

× not tested well … 
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– RFC v2 (soon): 

CPU isolation 

direct interrupt delivery 

direct EOI 

direct LAPIC timer 

SMP guest 

× no AMD SVM support 

× no in-kernel PIT emulation 

× Linux guest only 

× has an issue in page fault 
handling 

× not tested well … 



How to test 

1. Apply patch to Linux/KVM and qemu 

2. Disable PCI devices to pass-through 
 

  # echo XXXX:XXXX > /sys/bus/pci/drivers/pci-stub/new_id 

  # echo 05:00.0 > /sys/bus/pci/drivers/XXXX/unbind 

  # echo 05:00.0 > /sys/bus/pci/drivers/pci-stub/bind 
 

3. Offline CPUs to be dedicated 
 

  # echo 0 > /sys/devices/system/cpu/cpu3/online 
 

4. Execute guest VM 
– Currently “–no-kvm-pit” option is required 

– VGA is very slow; not recommended 
 

  # qemu-kvm.patched  -m 1024 –cpu qemu64,+x2apic ＼ 

      -enable-kvm     ＼ 

      -no-kvm-pit     ＼ 

      -serial pty     ＼ 

      -nographic     ＼ 

      -drive file=kvm/test.img,if=virtio ＼ 

      -device pci-assign,host=05:00.0 
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Future Plan 

– Reduce restrictions 

• in-kernel chip emulation (e.g. PIT) 

• AMD SVM support 

• support Non-Linux guest like RTOS 

 

– Implement direct interrupt (IPI) delivery for virtio 

• Can improve realtime performance with shared devices 

• Migration support? 
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Thank you! 

Questions? 
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Copyrights and Trademarks Notices 

• Linux is a registered trademark of Linus Torvalds. 

• All other trademarks and copyrights are the property of their 
respective owners. 
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