
Improve Android System
Component Performance

Jim Huang (黃敬群) <jserv@0xlab.org>

Developer & Co-Founder, 0xlab
http://0xlab.org/

Feb 14, 2012 / Android Builders Summit

Rights to copy

Attribution – ShareAlike 3.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this
work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© Copyright 2012 0xlab
http://0xlab.org/

contact@0xlab.org

Corrections, suggestions, and contributions are
welcome!

Latest update: Feb 14, 2012

http://creativecommons.org/licenses/by-sa/3.0/legalcode

0x1ab = 162 + 16x10 + 11 = 427
(founded on April 27, 2009)

0xlab is another Hexspeak.
(pronounce: zero-aks-lab)

About Me (1) Come from Taiwan
(2) Contributor of Android
Open Source Project (AOSP)
(3) Developer, Linaro
(4) Focus: system performance
and virtualization at 0xlab

Mission of 0xlab development:
Improve UX in SoC

UX = User Experience

SoC = Integrated Computing Anywhere

Strategy and Policy

• open source efforts to improve AOSP
• We focus on small-but-important area of Android.

– toolchain, libc, dynamic linker, skia, GLES,
system libraries, HAL

• Develop system utilities for Android
– benchmark, black-box testing tool, validation

infrastructure

• Value-added features
– Faster boot/startup time, Bluetooth profile, visual

enhancements

• Submit and share changes to community
– AOSP, CyanogenMod, Android-x86

– Linaro

CyanogenMod Android-x86Rowboat

Working Model

Lucky!

We encountered the "bug" in Android accidently

Hidden Bugs in AOSP

• AOSP is dedicated to mobile
product devices shipped by OHA
members
– Fixed hardware and

specifications

– Not well verified for other
configurations

• Performance is important, but we
frequently hit the hidden bugs
when apply aggressive
optimizations.
– Quality is the first priority!

Quality in custom Android Distribution

• 0xlab delivers the advantages of open source
software and development.
– Quality relies on two factors: continuous

development + strong user feedback

• Several utilities are developed to ensure the
quality and released as open source software.
– 0xbench (Android benchmarking tool)

– ASTER (Android System Testing Environment and Runtime)

– LAVA (Linaro Automated Validation Architecture)

• In the meanwhile, performance is improved by
several patches against essential components.

Tip: Automate system before optimizing

Android benchmark running on LAVA.
Automated Validation flow includes
from deploy, then reboot, testing,
benchmark running, and result submit.

Android support on LAVA
 https://wiki.linaro.org/Platform/Validation/LAVA

Android related commands in LAVA:
 * deploy_linaro_android_image
 * boot_linaro_android_image
 * test_android_basic
 * test_android_monkey
 * test_android_0xbench
 * submit_results_on_host

LAVA: Automated Validation Infrastructure for Android

Check "LAVA Project Update"
by Paul Larson,

2012 Embedded Linux Conference

• A set of system utilities for
Android to perform
comprehensive system
benchmarking
• Dalvik VM performance
• OpenGL|ES performance
• Android Graphics framework

performance
• I/O performance
• JavaScript engine performance
• Connectivity performance
• Micro-benchmark: stanard C library,

system call, latency, Java
invocation, ...

0xbench: comprehensive open source benchmark
suite for Android

Project page: http://code.google.com/p/0xbench/

: 0xBench

Collect and Analyze results on
server-side

• stress test
– Utilizing 'monkey', which is part of framework

• Automated test
– Both blackbox-test and whitebox-test are required

Android Functional Testing

Stress Test

• According to CDD (Compatibility Definition Document),
Device implementations MUST include the Monkey
framework, and make it available for applications to
use.

• monkey is a command that can directly talks to
Android framework and emulate random user input.
adb shell monkey p your.package.name v 500

• Decide the percentage of touch events, keybord
events, etc., then run automatically.

ASTER: Automated Test

• Blackbox-test vs. Whitebox-test
• An easy to use automated testing tool with IDE

– Built upon MoneyRunner

• Batch execution of visual test scripts
• Multiple chains of recall commands
• Designed for non-programmer or Q&A engineers
• Use OpenCV to recognize icons or UI hints

Project page: http://code.google.com/p/aster/

Prototype in 2009

ASTER IDE in 2011

It is time to improve the
performance of Android system

components

No Silver Bullet
to Improve the whole

Possibly Premature optimizations in Android

• “Premature optimization is the root of all evil”
– Donald Knuth

• bionic libc
– glibc incompatibility, No SysV IPC, partial Pthread,

incomplete prelink

– inactive/incorrect kernel header inclusion

– May not re-use existing system utilities

• Assumed UI behavior
– Input event dispatching and handler

– Strict / non-maintainable state machine (policy)

– Depending on a certain set of peripherals

• Unclear HAL design and interface
– Wifi, Bluetooth, GPS, ...

Think Difficult

• To make performance improvement visible
– Modifications from Application level, Android

framework, system libraries, and kernel

• Slowdown in newer Android version

– Example: Graphics in Eclair (2.0/2.1) is much
slower than 1.5 or 1.6

• To optimize or not to optimize, that is the question.
– Merge Local optimizations != Optimized

globally

– Many Android applications don't take various
devices into consideration. Thus, performance
issues occur all the way.

Which parts will be Improved?

• 2D/3D Graphics
• Android Runtime
• Boot time

Three frequently mentioned items in Android engineering are selected
as the entry points: 2D/3D graphics, runtime, and boot time.

Android Graphics

System Library System Library

Android FrameworkAndroid Framework

ApplicationsApplications

Gallery Phone Web Browser Google Maps

Activity
Manager

Window
Manager

Content
Manager View System Notification

Manager

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

SurfaceFlingerSurfaceFlinger OpenCOREOpenCORE SQLite

OpenGL|ESOpenGL|ES

Freetype

WebKit

SGLSGL OpenSSL bionic libcbionic libc

Linux KernelLinux Kernel

・・・・・

Android RuntimeAndroid Runtime

Class Library

Dalvik Virtual MachineDalvik Virtual Machine

Functional View (1.5)

AudioFlingerAudioFlinger

System Library System Library

Android FrameworkAndroid Framework

ApplicationsApplications

Gallery Phone Web Browser Google Maps

Activity
Manager

Window
Manager

Content
Manager View System Notification

Manager

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

SurfaceFlingerSurfaceFlinger SQLite

OpenGL|ESOpenGL|ES

Freetype

WebKit

SkiaSkia OpenSSL bionic libcbionic libc

Linux KernelLinux Kernel

・・・・・

Android RuntimeAndroid Runtime

Class Library

Dalvik Virtual MachineDalvik Virtual Machine

Functional View (2.3)

AudioFlingerAudioFlinger

RenderScriptRenderScript

SMP fixes

SMP improvements

JIT compiler

OpenGL|ES 2.x accelerated.
Drop 2D accel

V8 bridge

Skia supports GPU backend
In Android 3.x

StageFright

GLES 2.0

 Properties

 Can combine 2D/3D surfaces and surfaces from multiple applications

 Surfaces passed as buffers via Binder IPC calls

 Can use OpenGL ES and 2D hardware accelerator for its compositions

 Double-buffering using page-flip

Android SurfaceFlinger

from EGL to SurfaceFlinger

hgl = hardware
OpenGL|ES

hgl = hardware
OpenGL|ES

agl = android software
OpenGL|ES renderer

agl = android software
OpenGL|ES renderer

Android Framework (Java)

libGLES
(libagl)

libui

libpixelflinger

Copybit
(HW accelerated)

Surfaceflinger
(service)

EventHub libandroid_runtime

Android Graphics without OpenGL|ES
Hardware

libpixelflinger is software renderer
Android 4.0 comes with a new implementation,

PixelFlinger2, which Is based on LLVM and
Mesa (glsl2-llvm): external/mesa3d

libpixelflinger is software renderer
Android 4.0 comes with a new implementation,

PixelFlinger2, which Is based on LLVM and
Mesa (glsl2-llvm): external/mesa3d

libagl is an optimized GLES 1.x
Impl. Android 4.0 comes with libAgl2,
which provides software GL ES 2.0
Implementation using Pixelflinger2

libagl is an optimized GLES 1.x
Impl. Android 4.0 comes with libAgl2,
which provides software GL ES 2.0
Implementation using Pixelflinger2

When GLES doesn't work,

software is used

When GLES doesn't work,

software is used

Renamed to libgui
in Android 4.0

Renamed to libgui
in Android 4.0

2D Accelerator for Android Graphics

• libcopybit provides hareware bitblit operations which
includes moving, scaling, rotation, mirroring, and more
effects, like blending, dithering, bluring, etc.

• Removed since Android 2.3
– But adding it back might improve UX in large screen.

• Android has two copybit interfaces:
– Blit: moving / blending
– Stretch: scaling besides moving

• libcopybit is called by libagl which can do swapBuffers to
do the framebuffer page flipping that can also be
accelerated by libcopybit.

Copybit could improve the performance of page flippingCopybit could improve the performance of page flipping

Copybit operations
Copybit: 2D blitterCopybit: 2D blitter

Optimizing Graphics without 3D/HW

• Implement copybit HAL carefully
– Minimize clip region

– Eliminate data copy

• Check ioctl for page flipping in framebuffer driver
– Efficiency and consistency

• Without 3D/HW, Android Graphics is CPU bound

– Reduce the amount of surfaces to manipulate

– Optimizing skia (2D vector library) is important

– Optimize color space conversion

– Optimize blitter and primitive operations like
matrix using ARM VFP and NEON

2D on Nexus S
Apply extra performance tweaks against optimized build
(NEON)

2D Improvement (1)

external/skia/
ccommit ae265ac7f132f5d475040edf134e312b3987eade

 Add NEON optimized blitter: RGB565 to ABGR8888 without filter
and blending

commit 4b9b68bb9b8f82d6f70d98449851bc4bb19958bd

 optimize blend32_16_row and unroll SkRGB16_Blitter::blitRect

 Reference benchmark using 0xbench 2D on Nexus S (1 GHz)

 [before]

 Draw Rect: 28.52 fps

 [after]

 Draw Rect: 37.89 fps

This presentation takes the contributions in CyanogenMod
as example including SHA-1 hash

2D Improvement (2)
external/skia/
commit cb837750a37d59c979768320a7cf5ced96c7231c

 Add NEON optimized SkARGB32_Black_Blitter::blitMask

 Reference benchmark results on Nexus S (ARM Cortex-A8; 1 GHz) using

 skia_bench: (time in ms, smaller is better)

 [before]

 running bench [640 480] text_48_linear_pos

 8888: cmsecs = 88.18

 565: cmsecs = 61.51

 running bench [640 480] text_48_linear

 8888: cmsecs = 85.85

 565: cmsecs = 60.18

 [after]

 running bench [640 480] text_48_linear_pos

 8888: cmsecs = 38.52

 565: cmsecs = 59.11

 running bench [640 480] text_48_linear

 8888: cmsecs = 36.24

 565: cmsecs = 57.37

•

Benchmark: 2D (arm11-custom)

Benchmark: 3D (arm11-custom; no GPU)

This explains that we have several system tools and development flow
to help customers/community to verify the performance and improve.

3D/HW

Optimizing Graphics with 3D/HW

• The significant changes happen in applications and
Android (Java) framework usage
http://developer.android.com/guide/practices/design/performance.html

• Implement libgralloc carefully
– Minimize the overhead of graphics memory

allocator: the kernel helper

– Example: UMP (Unified Memory Provider) in ARM
Mali GPU

• Track the transactions inside SurfaceFlinger
– Eliminate the invalid layer operations

– Corresponding modifications in upper framework
• Still, page flipping benefits from libcopybit

– but it has smaller difference with 3D/HW

Android Runtime

Arithmetic on Nexus S Tune Dalvik VM performance (armv7)

Arithmetic Improvements
• Floating-point performance depends on Dalvik VM.
• Internally, Dalvik VM has huge amount of byte-swapped access,

which can be improved by ARMv6's REV and REV16 instructions.
bionic/
commit 02bee5724266c447fc4699c00e70d2cd0c19f6e1

 Use ARMv6 instruction for handling byte order

 ARMv6 ISA has several instructions to handle data in different

 byte order.

libcore/
commit 7d5299b162863ea898dd863004afe79f7a93fbce

 Optimize byte-swapped accesses.

 Brings the performance of byte-swapped accesses way down from about

 3x to less than 2x worst-case (char/short) and 20% best-case

 (long/double). The main active ingredients are switching to a

 single-pass swapped-copy (rather than copy in one pass, swap

 in a second pass), and ensuring we use ARM's REV and REV16

 instructions.

• Android C/C++ library
• 0xlab/Linaro Optimizations (merged in AOSP)

– Memory operations: Use ARMv6 unaligned access to
optimize usual cases

• Useful to TCP/IP (big-endian ↔ little endian)
– Various ARM optimized functions

• memcpy, strcmp, strcpy, memset, memcpy, strlen
• sha1
• code size reduction: useful for recovery image

bionic libc

Prelinking in GNU world
(Quote from Embedded Linux optimizations – Size, RAM, speed,
power, cost by Michael Opdenacker
Thomas Petazzoni, Free Electrons)

• prelink
http://people.redhat.com/jakub/prelink/

• prelink modifies executables and shared libraries to
simplify the dynamic linker relocation work.

• This can greatly reduce startup time for big applications
(50% less for KDE!). This also saves memory consumed
by relocations.

• Can be used to reduce the startup time of a Linux system.
• Just needs to be run again when libraries or executables

are updated.
Details on http://elinux.org/Pre_Linking

http://people.redhat.com/jakub/prelink/
http://elinux.org/Pre_Linking

Dynamic Linker Optimization:
Why and How?

• The major reason to optimize dynamic linker is to
speed up application startup time.

• Approaches:
● Implement GNU style hash support for bionic

linker
● Prelinker improvements: incremental global

prelinking
– reduce the number of ELF symbol lookup

aggressively

• Changed parts
– apriori, soslim, linker, elfcopy, elfutils

bo
ot

an
im

at
io

n

m
ed

ia
se

rv
er

ap
p_

pr
oc

es
s

ke
ys

to
re

db
us

-d
ae

m
on

de
bu

gg
er

d

se
rv

ic
em

an
ag

er ri
ld

in
st

al
ld

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lp
gp
re.gp
re.pe.gp
re.pe.pgp.gp
re.pe.pgp.gp.are

(normalized) Dynamic Link time

 bo
ot

an
im

at
io

n

m
ed

ia
se

rv
er

ap
p_

pr
oc

es
s

ke
ys

to
re

db
us

-d
ae

m
on

de
bu

gg
er

d

se
rv

ic
em

an
ag

er ri
ld

in
st

al
ld

-0.2

0

0.2

0.4

0.6

0.8

1

elf.lp
elf.gp
elf.re.gp
elf.re.pe.gp
elf.re.pe.pgp.gp
elf.re.pe.pgp.gp.are

(normalized) Symbol Lookup number

libc.so
printf

libfoo.so
foo
bar

void foo (){
 printf(“fooooo”);
 bar();
}

DT_GNU_HASH
foo
bar

DT_HASH
foo
bar
printf

libfoo.so

• DT_GNU_HASH: visible dynamic linking improvement =
Better hash function (few collisions)
+ Drop unnecessary entry from hash
+ Bloom filter

Symbols
in ELF

lookup# fail# gnu hash filtered by bloom

gnu.gp 3758 23702 19950 23310 18234 (78%)

gnu.gp.re 3758 20544 16792 19604 14752 (75%)

gnu.lp 61750 460996 399252 450074 345032 (76%)

gnu.lp.re 61750 481626 419882 448492 342378 (76%)

Bit array

H = {x, y, z} = hash functions

Hash function may collision
 → Bloom filter may got false positives

NOTE: Android 4.0 removes the support of prelinker,
but gnu style hash is still useful.

JNIJNI

Skia bridgeSkia bridge

WebKit

WebCore event Refresh the surface
(expose event)

skia

Surface

Case Study: WebKit in Android

Android.webkit.WebViewCore
android.webkit.WebView

...

v8v8

• for Native libraries →
• Use 'perf' built without libperl, libpython
• oprofiled and opcontrol are there, CPU data is

missing
• Binaries for ARM need frame pointers to have

backtraces
• Java part is the performance hell always.
• traceview is a great tool for Java performance

analysis.
• JVMTI / JDWP (Java Debug Wire Protocol, normally

spoken between a VM and a debugger)

How to Measure On Android/ARM?

Overhead Command Shared Object Symbol
........
#
 89.23% system_server 2b0c6c [.] 0x000000002b0c6c
 1.26% MLVdo_thread [kernel_helper] [k] 0x0000000017aa90
 1.05% d.process.acore libskia.so [.] S32A_Opaque_BlitRow32_arm
 0.83% d.process.acore libcutils.so [.] android_memset32
 0.63% system_server libc.so [.] memcpy
 0.63% d.process.acore libc.so [.] memset

system_server is the process name of Android
Framework runtime. It occupies most of CPU
resources, but it is hard to figure out details
only by native tools like perf.

We can always optimize known performance hotspot
routines such as S32A_Opaque_BlitRow32_arm but
should be measured in advance.

Traceview (java)

Approaches to Optimize WebKit

• Cherry-pick upstream enhancements
– Example: ARM NEON optimized renderer and blur

effects

• Track JNI bridge in WebKit – Avoid memory leaks
• Use hardware accelerated backing store for certain

UI actions such as scrolling
– Check Qualcomm's QAEP

• Image caching in both skia and webkit
• Since skia supports GL backend, webkit can utilize

the accelerated paths
– That's what Android 4.0 emphasize on.

Case Study: Profiling JNI

• Aprof : an Android profiler (by 0xlab, android-
platform@ mailing-list)
– a profiling tool for Android native code; aprof is not

only another gprof implement on Android but also
support for profiling shared

• The capability of aprof is similar to what gprof does, it
provides call graph and time sampling profiling, but
it's incompatible with gprof since the gprof can not
profile shared library.
– Limited by its representation and the fact of bionic

libc incompatibility with GNU world.
• Integrated with Android activity life-cycle

Aprof

 % cumulative self self total

 time time time calls ms/call ms/call name

 99.52 2170 2140 2178309 0 0 fib

 0.00 2170 0 1 0 217 main

 0.48 0 30 0 0 0 <libc.so>

Android.mk

LOCAL_ENABLE_APROF := true

Android Boot Time Optimizations

Reducing Boot-Time is Art

• You have to take every piece of boot flow into
consideration.

• Linux Kernel itself usually contributes less time than
userspace.

Bootchart of Android 4.0 on Nexus S
We will focus on reducing “cold” boot time,
from power on to the execution of the system application.

Qi Boot-loader
 Only one stage boot-loader
 Small footprint ~30 KB
 Currently support

− Freescale iMX31
− Samsung S3C24xx
− Beagleboard

 KISS concept
− Boot device and load kernel
− 3 second reduction!

Qi
Boot-oader

U-Boot + XLoader

Size ~30K ~270K+20K

Time to Kernel < 1 s > 5s

Usage Product Engineering

Code Simple Complicated

Write Tiny Boot loader to Speed up

Romcode

XLoader

Uboot

Linux

Romcode

Uboot

Linux

Romcode

Uboot

Linux

Romcode

Uboot

Linux

Romcode

Uboot

Linux

Romcode

Uboot

Linux

ROM

U-boot

Linux

Romcode

Qi

RomcodeRomcodeRomcodeRomcodeRomcodeROM

Linux

TI OMAP3

Optimized ARM Hibernation
• Based on existing technologies and little

modifications to userspace are required
– TuxOnIce

• Release clean-pages before suspend
• Swap out dirty-pages before save image
• Image size reduced leads to faster resume time.

Demo video: http://www.youtube.com/watch?v=pvcQiiikJDU
Beagleboard-xM (OMAP3)
Full source tree: http://gitorious.org/0xlab-kernel

http://www.youtube.com/watch?v=pvcQiiikJDU
http://gitorious.org/0xlab-kernel

Further Boot Time Optimizations
• Save the heap image (like core dump) of Zygote

after preloading classes
• Modify Dalvik to make hibernation image after

system init and before Launcher startup
• Parallize Android init
• Cache & share JIT'ed code fragment

Reference: File-Based Sharing For Dynamically Compiled Code
On Dalvik Virtual Machine, National Chiao Tung University in Taiwan

Initial bootchart analysis:

(1) It takes 27s from HW reset to Android Launcher screen.

(2) There is an improper Ethernet bring-up blocking for 2s.

(3) CPU usage looks busy.

Initial bootchart analysis:

(1) It takes 27s from HW reset to Android Launcher screen.

(2) There is an improper Ethernet bring-up blocking for 2s.

(3) CPU usage looks busy.

Improper Ethernet
bring-up blocking

Reduced from 27s to 22s

Android Launcher appears
earlier then previous scenario.

Remove unnecessary dependency
to active services concurrently
Remove unnecessary dependency
to active services concurrently

Remove “preloaded-classes" to
eliminate the time cost from Zygote

Risk: potentially slower Android
activity launch time

Remove “preloaded-classes" to
eliminate the time cost from Zygote

Risk: potentially slower Android
activity launch time

Reduce boot time without Hibernation

• Zygote (init2) takes a long time to initialize Dalvik
VM and Android framework, which are usually of
the same context in virtual memory view

• If we can capture the state of a running process in
Linux and save it to a file. This file can then be used
to resume the process later on, either after a reboot
or even on another machine.

http://cryopid.berlios.de/

https://ftg.lbl.gov/projects/CheckpointRestart/

http://dmtcp.sourceforge.net/

• Only not zygote can benefit from from process
freezing technique, but also system robustness
might be improved.

http://cryopid.berlios.de/
https://ftg.lbl.gov/projects/CheckpointRestart/
http://dmtcp.sourceforge.net/

Conclusion

• Optimizing Android requires the collaboration from
community – verification, utilities, and upsteam

• UX is not as simple as its length.
– Always Do measurement before taking actions

– Hacking around the software stack

• Automated testing + continuous integration is
really important.

http://0xlab.org

	Slide 1
	Rights to copy
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide400
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Prelinking (2)
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

