
PASR Framework
Saving the Power Consumption of the Unused Memory

Maxime Coquelin

Loïc Pallardy

2/15/2012 1

Content

∙ Context

∙ DDR power management mechanisms

∙ Existing concepts

∙ The PASR Framework

∙ How to use PASR framework?

∙ Next steps

2/15/2012 2

Content

∙ Context

∙ DDR power management mechanisms

∙ Existing concepts

∙ The PASR Framework

∙ How to use PASR framework?

∙ Next steps

2/15/2012 3

Context

∙ Trend: Increase of DDR size in embedded devices

∙ From 1GB today

∙ Up to 8GB tomorrow

∙ Major contributor to platform power consumption

∙ About 25% of floor current with 512MB configuration on Novathor 8500

∙ About 70% of floor current with 2GB configuration on Novathor 9540

∙ More and more DDR bandwidth requested

∙ New chipset generation proposes DDR die interleaving.

Control memory power consumption is now mandatory to reach

Mobile Phone manufacturers power consumption requirements

2/15/2012 4

Content

∙ Context

∙ DDR power management mechanisms

∙ Existing concepts

∙ The PASR Framework

∙ How to use PASR framework?

∙ Next steps

2/15/2012 5

DDR power management mechanisms

Partial Array Self-Refresh (PASR)

∙ Stop refreshing unused chunks of memory

∙ Four modes available

∙ Single-ended

∙ Double-ended

∙ Bank-selective

∙ Segment-selective

∙ Bank and segment selective modes are the best-adapted to Linux

∙ But depends on DDR

∙ Bank-selective: Around 40µA @3.7V gain per 64MB bank masked

2/15/2012 6

DDR power management mechanisms

Deep Power-Down (DPD)

∙ Shutdown full DDR die and its internal controller

∙ Better power consumption gain

∙ Around 400µA @3.7v saved per 4Gb die (8 banks) in DPD.

∙ Constraints:

∙ Wake-up latency: 220µs

∙ Minimum DPD duration: 500µs

∙ DPD and PASR can coexist

∙ Interesting for power saving

∙ But difficult with interleaving

2/15/2012 7

Content

∙ Context

∙ DDR power management mechanisms

∙ Existing concepts

∙ The PASR Framework

∙ How to use PASR framework?

∙ Next steps

2/15/2012 8

Existing concepts

Linux Memory Hotplug

∙ Allows to insert/remove memory chunks in/from the allocator

+ Already available in mainline Kernel

+ Solution envisaged by Linaro for Memory PM

- No officially ARM architecture support

- Introduce high latencies

- No check of unmovable page presence before starting sequence

- Require governor to decide when to plug/unplug the memory

- No DDR PASR/DPD support

2/15/2012 9

Content

∙ Context

∙ DDR power management mechanisms

∙ Existing concepts

∙ The PASR Framework

∙ How to use PASR framework?

∙ Next steps

2/15/2012 10

The PASR Framework

Description

∙ Add DDR PASR support on Linux platforms

∙ Characteristics:

∙ Complete DDR memories topology

∙ Bank and Segment configurations support

∙ DDR die interleaving support

∙ Compliant with DDR DPD

∙ Interface based on standard get/put mechanism

∙ Get: Banks or segments refresh are unmasked when used

∙ Put: Banks or segments refresh are masked when unused

2/15/2012 11

The PASR Framework

Architecture Overview

2/15/2012 12

DDR controller DDR

Carveout

memory

allocator

PASR

Framework

Linux

Memory

Allocator

User

Kernel

MuM

Services

Balloon

driver

Any

allocator

Memory

governor

The PASR Framework

Internal Architecture

2/15/2012 13

PASR Framework Core

Allocators

DDR Controller

Provides an API to

memory allocators,

and manages

segments/banks

usage counters

Hardware specific driver

The PASR Framework

Internal Architecture

2/15/2012 14

PASR Framework Core

Allocators

DDR Controller

Provides an API to

memory allocators,

and manages

segments/banks

usage counters

Manages the control

of the PASR masks

registers.

Take into account

platform

characterictics

(DDR controller,

security…)

Hardware specific driver

The PASR Framework

Internal Structures

2/15/2012 15

DDR Die 0

phys_addr_t start;

int idx;

int nr_sections;

struct pasr_section section[];

phys_addr_t start;

struct pasr_section *pair;

unsigned long free_size;

...

...

…

n

0

1

DDR Die 1

phys_addr_t start;

int idx;

int nr_sections;

struct pasr_section section[];

phys_addr_t start;

struct pasr_section *pair;

unsigned long free_size;

...

...

…

n

0

1

PASR map

The PASR Framework

Internal Structures

2/15/2012 16

DDR Die 0

phys_addr_t start;

int idx;

int nr_sections;

struct pasr_section section[];

phys_addr_t start;

struct pasr_section *pair;

unsigned long free_size;

...

...

…

n

0

1

DDR Die 1

phys_addr_t start;

int idx;

int nr_sections;

struct pasr_section section[];

phys_addr_t start;

struct pasr_section *pair;

unsigned long free_size;

...

...

…

n

0

1

PASR map

The PASR Framework

Initialization

2/15/2012 17

∙ PASR parameters passed via the Kernel command line

∙ ddr_die=xxx[M|G]@yyy[M|G]

∙ xxx : size of the DDR die

∙ yyy : offset of the DDR die

∙ E.g: ddr_die=512M@0 ddr_die=512MB@3G for 2x4Gb

∙ interleave=xxx[M|G]@yyy[M|G]:zzz[M|G]

∙ xxx : size if the interleaved section

∙ yyy : offset of the section A interleaved with section B

∙ zzz : offset of the section B interleaved with section A

∙ E.g: interleave=256M@0:3G interleave 256first MB of die 0 with die 1

∙ Plan to support Device Tree

The PASR Framework

API description

2/15/2012 18

∙ Generic interface (e.g. Carveout-style allocator):

∙ int pasr_get(phys_addr_t addr, phys_addr_t size)

∙ int pasr_put(phys_addr_t addr, phys_addr_t size)

∙ Page based interface:

∙ int pasr_kget(struct page *, int order)

∙ int pasr_kput(struct page *, int order)

The PASR Framework

Get sequence

2/15/2012 19

The PASR Framework

Get sequence

2/15/2012 20

Get DDR section

The PASR Framework

Get sequence

2/15/2012 21

Unmask section

refresh

The PASR Framework

Get sequence

2/15/2012 22

Verify

interleaving

Unmask

interleaved

section refresh

The PASR Framework

Get sequence

2/15/2012 23

Update section

counter

The PASR Framework

Put sequence

2/15/2012 24

The PASR Framework

Put sequence

2/15/2012 25

Get DDR section

The PASR Framework

Put sequence

2/15/2012 26

Update section

counter

The PASR Framework

Put sequence

2/15/2012 27

Mask interleaved

section refresh

The PASR Framework

Put sequence

2/15/2012 28

Mask section

refresh

Content

∙ Context

∙ DDR power management mechanisms

∙ Existing concepts

∙ The PASR Framework

∙ How to use PASR framework?

∙ Next steps

2/15/2012 29

How to use PASR framework?

First approach

∙ Concern: Have as much as possible a “simple solution”

∙ Minimize kernel modifications

∙ Based on current kernel services:

∙ Linux Memory Allocator

∙ Memory compaction

2/15/2012 30

How to use PASR framework?

 First approach - Overview

2/15/2012 31

DDR controller DDR

PASR

Framework

Memory

Compaction

User

Kernel

User Space

Governor

Linux

Memory

Allocator

VFS

How to use PASR framework?

Linux allocator specific optimization

∙ Buddy allocator

∙ Notification at page allocation/free level too heavy

∙ Useless regarding Buddy allocator principles!

Notifications only on “MAX_ORDER” pagebloc

Remove from free list  call pasr_kget

Add in free list  call pasr_kput

2/15/2012 32

2/15/2012 33

∙ Based on standard Memory Compaction feature

∙ Defragment memory

∙ Optimization possible for higher PASR efficiency

Segment 0

Segment 1

Segment n

Before compaction
1 segment in PASR

After “normal” compaction
3 segments in PASR

Movable page

Unmovable page

Free page

How to use PASR framework?

Memory Compaction

2/15/2012 34

∙ Based on standard Memory Compaction feature

∙ Defragment memory

∙ Optimization possible for higher PASR efficiency

Segment 0

Segment 1

Segment n

Before compaction
1 segment in PASR

After “normal” compaction
3 segments in PASR

After “PASR-Aware” compaction
5 segments in PASR

Movable page

Unmovable page

Free page

OR

How to use PASR framework?

Memory Compaction

2/15/2012 35

∙ Unmovable allocations possible in Highmem zone

∙ Movable zone  only Movable pages allocation

∙ Not implemented in mainline ARM Kernel

∙ Improve defragmentation

Highmem

Normal

Highmem

Normal

Movable

How to use PASR framework?

Movable Zone

How to use PASR framework?

Carveout-style allocator

∙ 2 different cases:

∙ Dedicated chunk of memory apply approach 1

∙ On Allocation: call pasr_get

∙ On Free: call pasr_put

∙ Based on CMA  no impact

∙ Linux Allocator handles PASR sequence

∙ When allocator resquest buffer to CMA, pages are removed from Linux

allocator free list

∙ When buffers are no more used, they return back to Linux allocator

thanks to CMA.

2/15/2012 36

How to use PASR framework?

Current Results

∙ Approach 1 has been integrated on Novathor L9540 platform

∙ 4x4Gb DDR fully interleaved

∙ Kernel 3.0

∙ Android ICS

∙ No compaction

∙ After platform start-up (Android Idle screen):

∙ More than 1.2GB of free memory

∙ 10 sections (over 32) masked

Results are promissing

2/15/2012 37

How to use PASR framework?

First approach status

+ “Make It Simple” solution

+ Based on existing development

+ Easy to put in place

+ The complete memory always available from system point of view

- Impact in Linux Buddy Allocator

- Request hook insertion which can slow down the page allocation

- No memory pressure control

2/15/2012 38

How to use PASR framework?

Second approach

∙ Based on a Balloon driver

∙ Inflating: allocate large contiguous memory buffer

∙ Deflating: release memory

∙ Based on page reclaim/migration

∙ Or CMA

∙ Connected to PASR framework

∙ Associated to a memory governor

∙ Memory pressure notification

∙ Memory pressure strategy

∙ Connected to user space for use case association

2/15/2012 39

How to use PASR framework?

Second approach - Overview

2/15/2012 40

DDR controller DDR

PASR

Framework

Linux

Memory

Allocator

User

Kernel

Balloon

driver

Power

Policy

Governor

Memory

governor

How to use PASR framework?

Second approach status

• Solution under investigation

+ Not intrusive in Linux memory allocator

+ Cost only when entering in idle or under memory pressure

+ Possible to control system memory pressure

+ Future proof

- More complex to set up

- No existing Balloon driver

- Memory pressure strategy definition

2/15/2012 41

Content

∙ Context

∙ DDR power management mechanisms

∙ Existing concepts

∙ The PASR Framework

∙ How to use PASR framework?

∙ Next steps

2/15/2012 42

Next Steps

• Patch series 2 release soon

• Integrate DPD support

• Add PASR debugfs

• Deliver PASR test suite

• Develop approach 2

2/15/2012 43

References

• PASR patch :

• https://lkml.org/lkml/2012/1/30/146

• Movable zone support for ARM

• git://codeaurora.org/kernel/msm.git

• Branch msm-3.0

2/15/2012 44

https://lkml.org/lkml/2012/1/30/146

QUESTIONS ?

THANK YOU

Contacts:

maxime.coquelin@stericsson.com

loic.pallardy@stericsson.com

