
1

©2012 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

UEFI as the Converged
Firmware Infrastructure

Dong Wei

VP (UEFI Forum), Chief UEFI Architect (HP)

April 5, 2012

2

Motivations

• Why UEFI?

3

Extensible, Flexible, & Unified

• Move away from PC-AT legacy
– 16-bit x86 processor architecture

– 1 MB memory space

– Expansion ROM execution space limit

– 2.2TB MBR formatted HDD

– IO Port space dependency (incl. PCI Config Space CFC/CF8)

– VGA

– Single PCI segment group

– PIC, PIT dependency

– Name space collision

• Unified converged firmware infrastructure
– Processor architecture agnostic (x86, x64, ARM, ia64, …)

– PE-COFF executables

– GPT formatted HDD

– GOP

– OSF-defined GUID as key element to avoid collision

4

History

• Past, Present, Future

5

UEFI Industry Transition

1995 HP/Intel needs a boot architecture for Itanium
servers that overcomes BIOS PC-AT limitations

1997-2000
Intel created EFI with HP and others in
the industry, made it processor
agnostic (x86, ia64)

tianocore.org, open source EFI
community launched

2004

Unified EFI (UEFI)
Industry forum, with 11 promoters, was
formed to standardize EFI, extended to
x64

2005

215 members and growing! Windows 8 and
ubiquitous native UEFI adoption for client
PCs

2012

2009 UEFI extended to ARM

Future UEFI as the converged firmware
infrastructure

6

UEFI Firmware Deployments

0

20

40

60

80

100

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

UEFI IA Platforms Shipment Projection

UEFI Firmware based % Legacy BIOS based %

Source: Various – UEFI Industry Communication Working Group data through 2010;

Intel customers platform UEFI adoption projection data for 2011-2015

Over 50% of worldwide IA units in 2010 and expected to

reach 90% by 2015

IA Mobile Platforms

UEFI Transition Complete;

MNCs UEFI

Servers shipping

IA Desktops

UEFI Transition

to complete

Full IA Industry

Native UEFI

Transition Expected

7

UEFI System Classes Based on Firmware I/F

Class

0

Class

1

Class

2
Class

3

Legacy
BIOS

UEFI CSM1
only

UEFI Switch:
CSM & UEFI

UEFI only

Limited Benefits:

OEMs/ODMs internal

Development Optimization

& Code Organization

Full Benefits:
UEFI Innovation

Performance

Extensibility

Advanced Usability

In
te

rf
a
c
e

E
x
p

o
s
e
d

Future Today

1Compatibility Support Module

8

Specifications vs.
Implementations

• Implementations vary

9

Why a Specification

• OEMs want to differentiate their systems in hardware and firmware

• Multiple operating environments are expected to be supported

• Third party device boot drivers may be needed

• MFG/DIAG/TEST tools are needed

• Implementations differ, but all players can agree on abstracted interfaces

• UEFI provides a converged firmware infrastructure

• A “Contract” between interface producers and consumers is needed

– Interfaces and the responsibilities of producers and consumers need to be written down

clear enough for reference (Specification)

• One way to manage interoperability, appropriate for the community served

– Proof-of-concept needs to be provided (reference implementation)

– Testability needs to be established (SCT)

Detailed Specification Helps Assure Interoperability

10

UEFI View

Firmware

Platform Specific UEFI Firmware

OS

System Hardware

UEFI Boot
Services

UEFI OS Loader OS APIs

UEFI Mode

UEFI Runtime
Services

P
la

tf
o
rm

 I
n
it
ia

liz
a
ti
o
n

PI Modular components

Hardware

UEFI-
enabled

OS

UEFI
Shell Legacy

OS

Option
ROMs

CPU PEI
Modules

C/S PEI
Modules

UEFI

• • •

U
E
FI D

rive
r

D
X
E
 D

rive
r

C
o
m

p
a
tib

ility
S
u
p
p
o
rt M

o
d
u
le

U
E
FI D

rive
r

B
D

S

U
E
FI D

rive
r

11

Specifications

• The UEFI Forum defines and promotes the Specifications and SCT

• UEFI Specification

– Interface definition between OS and system firmware

– Interface definition between UEFI drivers/applications and system firmware

• UEFI SCT

– Test suites for UEFI compliance

• UEFI Shell Specification

• PI Specifications & PI Packaging Specification

– System firmware internal interface definition

– OS developers: leave PI to the firmware developers!

• UEFI compliance does not require PI compliance

OS developers: leave PI to the
firmware developers!

OS developers: focus on the
interfaces that OS consumes!

12

Part of the Spec OS May Care

• Like a dictionary or encyclopedia, the spec is precise and complete as far as each
entry goes but it’s not meant to be read like a novel. It’s for reference.

• Baseline (~400 out of 2214 pages)

– 2.3 Calling Convention

– 3.1 FW Boot Manager

– 4.3 EFI System Table

– Ch 5 GPT Format

– Ch 6 Boot Services

– Ch 7 Runtime Services

– Ch 8 EFI Loaded Images

– Ch 9 Device Path Protocol

– Ch 11 Console Support

– 12.4, 12.7, 12.8, 12.9 Media Access

– 18.5 Decompress Protocol

• PXE support, if supported (44 pages)

– 21.1, 21.3

• Secure Boot, if supported (33 pages)

– 27.1~27.8

13

Implementations
• Implementations vary

– Reference Implementations
• EFI Sample Implementation

• EDK (e.g., EDK1117) reference implementation

• EDK II (e.g., UDK2010 SR1) reference implementation

– IBV implementations and value-add

– OEM in-house implementations and value-add

– HP shipped systems with all of these flavors

• File numbers vary
– Some implementations may maximize the reusability, others may minimize the file

numbers

• ROM code sizes vary
– Not all systems are created equal (from embedded systems to enterprise servers)

• From hundreds of KB (e.g.,200KB) to several MB (e.g.,12MB)(note: SPI protocol traditionally limits to 16MB ROM)

– No systems need to include all the reference sample code

– UEFI enables modular designs, move away from spaghetti assumption

OS developers: design to the UEFI Specification, don’t assume a
particular codebase!

14

UEFI Deployment @ HP

Microsoft Windows 7

Embedded Systems PC Clients

Printers and Scanners

Scanjet Enterprise 7000n*, Color

Laserjet CM4540 MFP*, Color

LaserJet CP5525*, LaserJet

M4555MFP*.

Storage

Network

Notebook PCs and Tablets

Commercial group has shipped

Class 2 systems since 2008

Consumer group is shipping Class 1

systems

Desktops and Workstations

Adopted a common UEFI codebase

Shipped Class 2 systems since

2H’2010

Enterprise Servers

Integrity Servers

Always Class 3 systems

HP-UX, VMS, Integrity VM

Operating Environment

Collaborate on HP UEFI features provided enhanced manageability, security and
ease of code with shared UEFI-based diagnostics

http://h17007.www1.hp.com/us/en/products/network-security/index.aspx
http://h10010.www1.hp.com/wwpc/us/en/sm/WF05a/321957-321957-64295-321838-89315-3688868.html

15

UEFI Secure Boot

• Motivations, History,

Definition

16

Why Implement UEFI Secure Boot?

• As OS becomes more resistant to attack the threat targets the weakest
element in the chain

• And 16-bit Legacy Boot is not secure!

It should be no surprise that a TDL Gang botnet climbed into the number one position in the Damballa

Threat Report – Top 10 Botnets of 2010. “RudeWarlockMob” … applied effective behaviors of old
viruses and kits. It combined techniques that have been effective since the days of 16-bit operating

systems, like Master Boot Record (MBR) infection … with newer malware techniques.
(from http://blog.damballa.com)

• http://www.theregister.co.uk/2011/09/14/bios_rootkit_discovered/

• http://www.theregister.co.uk/2011/11/18/windows_8_bootkit/

• Secure Boot based on UEFI 2.3.1 removes the Legacy Threat and provides
software identity checking at every step of boot – Platform Firmware,
Option Cards, and OS Bootloader

http://blog.damballa.com/
http://www.theregister.co.uk/2011/09/14/bios_rootkit_discovered/
http://www.theregister.co.uk/2011/11/18/windows_8_bootkit/

17

History

• Phoenix initiated the discussion on the need for secure boot

• USST (UEFI Security Subteam) formed to address the topic

• The secure boot architecture was defined in the UEFI 2.3

Specification

• Microsoft contributed additional capabilities for UEFI 2.3.1

Specification

– Append support for the authenticated variables

– Time-based authenticated variable for roll-back protection

– Authenticode specification for use in UEFI

– UEFI Secure Boot support in Windows 8

UEFI Secure Boot support is an industry effort.

18

Secure Boot – Three Components

1. Authenticated Variables

2. Driver Signing

3. System Defined
 Variables

 UEFI 2.3.1 SECURE BOOT

Scope: From power-on to the launch of OS loader

NO dependency on TPM

19

UEFI Authenticated Variables

• Uses standard UEFI Variable

Functions

• Available Pre-boot and also Runtime

• Typically stored in Flash

• Variable Creator signs Variable Hash

with Private Key (PKCS-7 Format)

• Signature & Variable Passed

Together for Create, Replace,

Extend, or Delete

• Several System-defined variables for

Secure Boot

19

Extensible Integrity Architecture

20

Updating Authenticated Variable

• Support for Append added (UEFI 2.3.1)

• Counter-based authenticated variable (UEFI 2.3)

– Uses monotonic count to protect against suspicious replay attack

– Hashing algorithm – SHA256

– Signature algorithm – RSA-2048

• Time-based authenticated variable (UEFI 2.3.1)

– Uses timestamp as rollback protection mechanism

– Hashing algorithm – SHA256

– Signature algorithm – X.509 certificate chains

 Complete X.509 certificate chain

 Intermediate certificate support (non-root certificate as trusted certificate).

20

Protected Variables that can be Securely Updated

New in
UEFI 2.3.1

New in
UEFI 2.3.1

21

UEFI Driver Signing

• In Secure Boot, signatures should be checked:

1. UEFI Drivers loaded from PCI-Express Cards

2. Drivers loaded from mass storage

3. Pre-boot EFI Shell Applications, FW updaters

4. OS UEFI Boot-loaders

• UEFI Signing is not applied to

1. Drivers in the Factory BIOS

2. Legacy components

• UEFI Driver Signing Utilizes Microsoft* Authenticode*

Technology to sign UEFI executables

– Authenticode and PE/COFF are licensed for use in UEFI

22

Program

10101
10110

Signature

UEFI Driver Signing

Driver or
Program

Hash
Function
(SHA256)

10101
10110

Hash Encrypt Hash
Using Signer’s

Private Key

10101
10110

Signature

Certificate

Attach to
Program

=

Digitally
Signed

Program

Digitally
Signed

Driver or
Program

Signing – by the creator:

Verification – In the PC:

Hash
Function

Decrypt Hash
with Signer’s

Public Key

Check local databases for
certificate. If certificate found
and not revoked, run UEFI
Executable.

10101
10110

Hash

10101
10110

Hash

=?

23

Secure Boot Authenticated Variables

PK Platform Key – Root key set to enable Secure Boot

KEK Key Exchange Key
List of Cert. Owners with db, dbx update privilege

db List of Allowed Driver or App. Signers (or hashes)

dbx List of Revoked Signers (or hashes)

SetupMode 1= in Setup Mode, 0 = PK is Set (User Mode)

SecureBoot 1 = Secure Boot in force

Notes:
• Owner of cert. in KEK can update db, dbx
• Owner of cert. in PK can update KEK

UEFI Defines System Databases for Secure Boot

24

3

User

Secure Boot Begins @ the Factory

Initial
Security

Load

2

Production

Initial Security Load is installed onto
each computer at the factory,
enabling Secure Boot.
1) Initial db and dbx
2) KEK with allowed updaters
3) Platform Key (PK)

Pre-production

1

Certificate Generating
Station @ OEM

OEM collects certificates provided by
OSVs, Partners, and OEM’s own keys.

“DB Generator” creates the Initial
Security Load for new computers.

OEM Responsible for Initializing Secure Boot

After delivery, the
OEM or OSV can
update with new
certificates or
revoked certificates*

*And OEM can allow User To Disable Secure Boot in ‘Setup’

25

Secure Boot Protects the User

Secure Boot Tests Signatures to Reject Potential Threats

User attempts to boot a
compromised system

OS Boot-loader image checked
against pre-loaded database

Root-kit fails checks, user protected
by Secure Boot

UEFI Forum: Although an optional feature in the UEFI Specification, the
UEFI Forum expects to see platforms with UEFI Secure Boot supporting both
commercial and open source operating systems. Our members view that as a
significant tool for both in the fight against pre-OS malware.

26

UEFI Signing Service

• The UEFI Forum decided not to host a UEFI Signing Service

– Liability too high, cost prohibitive

– Instead, worked with the Industry to provide UEFI Signing Service(s)

– Microsoft offered an independent certificate authority (CA) for UEFI, with a well
defined and fair process to blacklist a signature, including themselves

• Microsoft plans to use Winqual to provide a UEFI Signing Service

– Winqual hosts 11000+ companies (including some Linux distros and Apple)

– Minimal one-time administrative costs

– Free signing of UEFI images

• Other entities can work with the UEFI Forum to provide UEFI Signing
Service(s) as well

• Would like to keep the number of CAs at the minimum

– Keys need to be stored in flash

27

UEFI Secure Boot & TCG
Trusted Boot

• Complementary

28

What is a TPM?

• A hardware security component

– Think smartcard on the motherboard

– Could be integrated firmware, but should provided tamper resistance

• A root of trust in the platform
– Support for asymmetric cryptography

– Support for protected storage

– Support for migratable and non-migratable crypto keys

• At the core of the TCG Trusted Boot architecture

– TPM can be used to record and report software hashes

– TPM enables attestation of measurements to remote entities

– TCG Trusted Boot requires an external entity to validate the measurements and to apply

the right policies

29

TCG Trusted Boot: Building a Chain
of Trust

• The concept of a TCG Trusted

Boot is to have each

component in the chain be

measured by the preceding

one and recorded in a way

that can be reliably reported

• TCG Trusted Boot makes no

judgment on the

trustworthiness of any module

• TCG Trusted boot relies on

TPM and on a trusted boot

block (CRTM)

hardware

TPM

CRT
M

firmware

OS

middleware

application
software

30

TCG Trusted Boot: Building a Chain
of Trust

• The concept of a TCG Trusted

Boot is to have each

component in the chain be

measured by the preceding

one and recorded in a way

that can be reliably reported

• TCG Trusted Boot makes no

judgment on the

trustworthiness of any module

• TCG Trusted Boot relies on

TPM and on a trusted boot

block (CRTM)

hardware

firmware

measure TPM

CRT
M

OS

middleware

application
software

31

TCG Trusted Boot: Building a Chain
of Trust

• The concept of a TCG Trusted

Boot is to have each

component in the chain be

measured by the preceding

one and recorded in a way

that can be reliably reported

• TCG Trusted Boot makes no

judgment on the

trustworthiness of any module

• TCG Trusted Boot relies on

TPM and on a trusted boot

block (CRTM)

hardware

firmware

measure

store

TPM

CRT
M

OS

middleware

application
software

32

TCG Trusted Boot: Building a Chain
of Trust

• The concept of a TCG Trusted

Boot is to have each

component in the chain be

measured by the preceding

one and recorded in a way

that can be reliably reported

• TCG Trusted Boot makes no

judgment on the

trustworthiness of any module

• TCG Trusted Boot relies on

TPM and on a trusted boot

block (CRTM)

hardware

firmware

measure

store

TPM transfer control

CRT
M

OS

middleware

application
software

33

TCG Trusted Boot: Building a Chain
of Trust

• The concept of a TCG Trusted

Boot is to have each

component in the chain be

measured by the preceding

one and recorded in a way

that can be reliably reported

• TCG Trusted Boot makes no

judgment on the

trustworthiness of any module

• TCG Trusted Boot relies on

TPM and on a trusted boot

block (CRTM)

hardware

firmware

OS

middleware

application
software

measure

store

TPM transfer control

CRT
M

34

TCG Trusted Boot: Building a Chain
of Trust

• The concept of a TCG Trusted

Boot is to have each

component in the chain be

measured by the preceding

one and recorded in a way

that can be reliably reported

• TCG Trusted Boot makes no

judgment on the

trustworthiness of any module

• TCG Trusted Boot relies on

TPM and on a trusted boot

block (CRTM)

hardware

firmware

OS

middleware

application
software

measure

store

TPM transfer control

CRT
M

35

TCG Trusted Boot: Building a Chain
of Trust

• The concept of a TCG Trusted

Boot is to have each

component in the chain be

measured by the preceding

one and recorded in a way

that can be reliably reported

• TCG Trusted Boot makes no

judgment on the

trustworthiness of any module

• TCG Trusted Boot relies on

TPM and on a trusted boot

block (CRTM)

hardware

firmware

OS

middleware

application
software

measure

store

TPM transfer control

CRT
M

36

TCG Trusted Boot: Building a Chain
of Trust

• The concept of a TCG Trusted

Boot is to have each

component in the chain be

measured by the preceding

one and recorded in a way

that can be reliably reported

• TCG Trusted Boot makes no

judgment on the

trustworthiness of any module

• TCG Trusted Boot relies on

TPM and on a trusted boot

block (CRTM)

hardware

firmware

OS

middleware

application
software

measure

store

TPM transfer control

CRT
M

37

UEFI Secure boot: Enforcing Boot
Policy

• The concept of UEFI secure

boot is to have each

component in the chain be

validated and authorized

against a given policy before

allowing it to execute

• UEFI secure boot policy

implementations can range

from digital signatures to

preloaded hash values…

Hardware
(stores policy)

firmware

OS

middleware

application
software

OS Loader

38

UEFI Secure boot: Enforcing Boot
Policy

• The concept of UEFI secure

boot is to have each

component in the chain be

validated and authorized

against a given policy before

allowing it to execute

• UEFI secure boot policy

implementations can range

from digital signatures to

preloaded hash values…

Hardware
(stores policy)

firmware

middleware

application
software

validate

OS

OS Loader

39

UEFI Secure boot: Enforcing Boot
Policy

• The concept of UEFI secure

boot is to have each

component in the chain be

validated and authorized

against a given policy before

allowing it to execute

• UEFI secure boot policy

implementations can range

from digital signatures to

preloaded hash values…

Hardware
(stores policy)

firmware

middleware

application
software

validate transfer control

OS

OS Loader

40

UEFI Secure boot: Enforcing Boot
Policy

• The concept of UEFI secure

boot is to have each

component in the chain be

validated and authorized

against a given policy before

allowing it to execute

• UEFI secure boot policy

implementations can range

from digital signatures to

preloaded hash values…

Hardware
(stores policy)

firmware

middleware

application
software

validate transfer control

OS

OS Loader

UEFI scope
ends at OS
loader launch

41

UEFI Secure Boot and TPM

• No interdependency

– UEFI Secure boot does not require TPM

– TPM does not require UEFI Secure Boot

• Some complementarity

– TPM can be used to implement other types of Secure Boot

• i.e. to store certificates in NVRAM, or prevent modification of boot policies

– UEFI Secure Boot can be used in combination to TCG Trusted Boot

• Typically to simplify state complexity and increase robustness

42

Securing the Software Stack

• UEFI 2.3.1 security enhancements specifically

address the “secure boot” issue

• Securing the firmware itself further strengthens the

UEFI Secure Boot concept

– How is the firmware update protected?

– How is the firmware put into “admin mode”?

• NIST has created BIOS Protection Guidelines

– Secure flash update requirements

– Maintain firmware core root of trust

• UEFI 2.3.1 contains the framework to develop

secure flash update

http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

43

NIST Implementation Requirements

The NIST BIOS Protection Guidelines break down to three basic

requirements…

1. Authenticity: BIOS updates must be signed

2. Integrity: BIOS must be protected

3. Non-bypassability: only the authenticated BIOS update mechanism can

modify the BIOS

44

Linux support for UEFI Secure
Boot

• Issues & Solutions

45

Secure boot may not be supported by an OS

– Platforms, if supporting secure boot, provide a switch to enable/disable secure boot

Corporate IT or enthusiasts may want to enroll their own keys

– Users can move the system into setup mode, if platform supports

– Take the full responsibility by providing their own PK

– Do not assume OEM PK can be re-enrolled!

– OEM tools can still work (use a separate OEM key to sign these tools)

Key databases are stored in NVM space

– Resource limited, cannot accommodate each and every possible self-signers

– All UEFI drivers and applications are expected to be signed with the UEFI CA Service

hosted by Microsoft

– Ideally, OS bootloaders (a special form of UEFI application) can also be signed with the

UEFI CA service

Complete secure boot support needs more than UEFI

– Secure boot beyond the execution of the OS bootloader is beyond the scope of UEFI

– OS needs to provide its own secure infrastructure once the bootloader takes over

Issues Identified and Possible Solutions

46

IPv6 support via UEFI

47

Focus: IPv6 Networking

• IPv6 protocol compliance

– “IPv6 ready” logo approved

– Requirements for IPv6 transition (PDF)

• UEFI IPv6 Features

– IP4/6, UDP4/6, TCP4/6

– DHCP4/6, MTFP4/6

– iSCSI, PXE, IPsec

– Allows for concurrent
network applications
Dual stack (IPv4 and/or IPv6)

– DUID-UUID support

 New in UEFI 2.3.1
 Use SMBIOS system GUID as UUID

2.3.1

http://www.ipv6ready.org/db/index.php/public/
http://www.antd.nist.gov/usgv6/usgv6-v1.pdf
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=1
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=2
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=3
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=4
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=5
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=6
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=7
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=8
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=9
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=10
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=12
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=13
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=14
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=15
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=16
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=3
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=4
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=5
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=6
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=7
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=8
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=9
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=10
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=11
https://www.ipv6ready.org/db/index.php/public/search/?vn=UEFI&do=1&lim=25&o=12

48

OS Support for Netboot61

• SUSE* Linux Enterprise Server 11 Service Pack 2 x86_64 Beta

4* (SLES 11 SP2 x86_64 Beta 4)

– Supports UEFI 2.3.1 PXE Netboot6

– Can support at the same time requests for booting PXE to both IPV4

and IPV6 UEFI 2.3.1 clients

1 Details on Netbvoot6 can be found in the UEFI2.3.1 Specification

49

Call to Action

50

Call to Action

• Engage the UEFI community and make sure UEFI is Linux-

ready

– Linux is in a sense coming late to the UEFI party on x86.

– There’s been a LOT of testing of UEFI code with commercial operating

systems. Not so much with Linux.

 Opportunity to improve testing and hence quality of code measured by

Linux-readiness if together we can work on producing tests that exercise

UEFI APIs the way Linux code wants to do that.

– There’s no reason why Linux can’t get the same or more mindshare with

the firmware implementation world if folks on both sides are willing to

learn how the other side works and how to communicate across what

has been traditionally a wide divide

50

51

Q&A

Thank You!

