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How Program Development
is Supposed to Work
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Developer Has Great Idea
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Translates Great Idea
into C code 
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Compiler translates
C code to machine language
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Everything works!!
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Real World Program Development

● Developer Has Great Idea
● Translates Great Idea into C code

● Compiler translates C to machine language
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Something Unexpected Happens
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Developer uses debugger to 
understand the translation from 

Great Idea to machine language
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Many hours and many cups of 
coffee later translation error is fixed
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Debugging

   Great Idea ==> 
            C code ==> 
                                         machine language
● Two translation steps
● We look at the second translation to find 

problems in the first translation
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What We Think the Compiler Does

● Reads clear and complete program source
● Linear translation from C code into 

machine language
● Follows programmer's directions to the letter
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What Really Happens

● Compiler believes it knows better than the 
developer. Reorders and reorganizes the 
program to improve performance
● If it isn't prohibited, it's permitted
● If it isn't defined, compiler free to do anything

● Multi-step process of incremental optimization
● Each time a change is made, a little bit of 

information is lost
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Goals of the Compiler

● Correctly interpret C (or other) language
● Compare with language standard
● Verify with test suite and regression tests

● Generate correct machine language
● Defined by architecture manual
● Verify with test suite

● Optimize code
● Optimized result is the same as unoptimized code
● Verify with test suite

● Generate debugging info
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What the Debugger Knows

● Info from object file (executable, obj, library)
● Symbol names and addresses

– Global 

– Local (some)

● Info from processor
● Memory contents
● Register contents

● Info from system
● Library locations
● How to control programs
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What DWARF Tells the Debugger

● Source files – name and path
● Names of functions, arguments, globals, locals
● Type descriptions
● Types of functions, variables, and parameters
● Block structure of program
● Mapping between source and object (line<=> address)
● Variable location (registers/memory)
● How to unwind stack
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What DWARF Doesn't Tell

● Machine characteristics
● Registers, address size, instructions

● OS characteristics
● ABI 

● Calling conventions

● Program flow
● Semantics
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DWARF History

● Developed at AT&T as part of Unix SVR4

● PLSIG (Programming Languages SIG) of Unix International, Inc.  formed in 
1988

● DWARF version 1 (standard published 1992)
● Compatible with AT&T SVR4 DWARF format

● DWARF version 2 (draft standard released 1993)
● Not compatible with DWARF version 1

● Broader functionality

● More compact representation

● DWARF Committee reconstituted October, 1999

● DWARF version 3 (standard published 2005)
● Compatible with DWARF version 2

● DWARF version 4 (standard published 2010)
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DWARF Philosophy

● Permissive standard
● Describes what various DWARF constructs mean
● Does not mandate generation of specific constructs

● Extensible
● Supports user extensions
● Allows novel uses of existing attributes

● Upward compatible
● Consumers (i.e. debuggers) can read later versions
● Skip over unknown DIEs
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DWARF Goals

● Permit accurate and complete description of 
source to object translation
● Whether a particular compiler generates good or 

poor DWARF is a Quality of Implementation issue

● Compact data representation
● Efficient generation
● Open standard, transparent process
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Languages and Processors

●Block structured procedural languages

C
C++
Cobol
Java

x86
IA32
ARM

Ada
Fortran
Modula
Pascal

●Von Neuman or Harvard architecture
IA64
PowerPC
MIPS
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Basic Concepts

● DWARF can be used in any object file
● Most commonly associated with ELF

● Multiple data sections
● DWARF sections start with .debug_

– .debug_info – Program organization 
● Functions & Variables

– .debug_line – Line <=> address mapping
– Several other sections

● Compression – strings, abbreviations, types
● Other info – call frames, indexes – address and name
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Basic Data Structure

● Debugging Information Entry (DIE)
● Each DIE has a TAG which identifies purpose

– DW_TAG_compile_unit – Describe a compilation unit

– DW_TAG_subprogram – Describe a subroutine

– DW_TAG_variable – Describe a variable

– DW_TAG_pointer_type – Describe various types

– DW_TAG_formal_parameter – Describe arguments



Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

24

Basic Data Structure

● Each DIE has one or more attribute/value pairs
● Each attribute has a name

– Describes meaning of attribute

– Value specified for each attribute

– Data format specified in attribute encoding

● Examples
– DW_AT_name – Name of object DIE describes

– DW_AT_location – Source location of object

– DW_AT_low_pc – Start address of object

– DW_AT_high_pc – End address of object

– DW_AT_type – Pointer to DIE describing type
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DWARF Info Tree Structure

● Match block structure of source program
● Each DIE has zero or more sibling DIEs
● Each DIE has zero or more children
● Each Compilation is represented by a 

Compilation Unit DIE
● Everything is a child of the Comp Unit DIE
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DWARF Info Tree Structure
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Compile Unit DIE

● Describe compilation

● Source location

● Compilation directory

● Producer info

● Programming language

● Low and high PC range

● Pointers to other data
● Line number info
● Macro info

● Children DIEs describe the program
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Compile Unit DIE

 

 b3: DW_TAG_compile_unit
  DW_AT_producer    : GNU C 4.6.1 20110627      
  DW_AT_language    : 1 (ANSI C)
  DW_AT_name        : bzip2.c       
  DW_AT_comp_dir    : /ext/yocto/.../bzip2-1.0.6
  DW_AT_low_pc      : 0x0     
  DW_AT_entry_pc    : 0x0     
  DW_AT_ranges      : 0x260   
  DW_AT_stmt_list   : 0x82
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Subroutine DIE

● DW_TAG_subprogram
● Describe subroutine, function, inlined subroutine, entry 

point, declaration vs. definition
● Subroutine name and source location
● Visibility – whether it is external 
● Reference to return type DIE
● Low and high PC
● Prototyped flag

● “Owns” children DIEs: arguments, variables, types, 
and blocks within subroutine
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Subroutine DIE

1ba2: DW_TAG_subprogram
  DW_AT_external    : 1      
  DW_AT_name        : main 
  DW_AT_decl_file   : 1      
  DW_AT_decl_line   : 1776   
  DW_AT_prototyped  : 1      
  DW_AT_type        : <0x683>        
  DW_AT_low_pc      : 0x80491e0      
  DW_AT_high_pc     : 0x8049d90      
  DW_AT_frame_base  : 0x22e3 (location list)
  DW_AT_sibling     : <0x212a>   
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Variable DIE

● Describe data object
● Variable name
● Reference to type DIE
● Source location
● Declaration vs. definition
● Run time location
● Default value
● Constant value
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Variable DIE

1c28: DW_TAG_variable
  DW_AT_name        : decode       
  DW_AT_decl_file   : 1      
  DW_AT_decl_line   : 1782   
  DW_AT_type        : <0x657>        
  DW_AT_location    : 0x24ed (location list)
...
213b: 71 (DW_TAG_variable)
  DW_AT_name        : stdin        
  DW_AT_decl_file   : 5      
  DW_AT_decl_line   : 165    
  DW_AT_type        : <0x465>        
  DW_AT_external    : 1      
  DW_AT_declaration : 1      
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Base Type DIE

● Describe data type that is directly implemented by 
machine hardware

● Name of type
● Examples: int, long, unsigned char, etc.

● Encoding
● Example: address, boolean, signed, float, decimal

● Size 
● Size in bytes or bits needed to hold value
● Offset within storage unit



Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

34

Base Type DIE
d4: DW_TAG_base_type
  DW_AT_byte_size   : 2        
  DW_AT_encoding    : 7 (unsigned)
  DW_AT_name        : short unsigned int       
db: DW_TAG_base_type
  DW_AT_byte_size   : 4        
  DW_AT_encoding    : 7 (unsigned)
  DW_AT_name        : unsigned int
...
6d: DW_TAG_base_type
  DW_AT_byte_size   : 1       
  DW_AT_encoding    : 8 (unsigned char)
  DW_AT_name        : unsigned char
... 
f7: DW_TAG_base_type
  DW_AT_byte_size   : 4        
  DW_AT_encoding    : 5 (signed)
  DW_AT_name        : int
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Composite Type DIEs

● Type DIE constructed from references to other 
type DIEs, either Base Type or Composite Type

● Const_type, volatile_type
● Represent “const” or “volatile” qualifier

● Pointer_type
● Represent pointer to qualifier (“*”)

● Typedef
● Eventually reach Base Type
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Composite Type DIEs
260: DW_TAG_structure_type
  DW_AT_name        : _IO_FILE      
  DW_AT_byte_size   : 148     
  DW_AT_decl_file   : 6       
  DW_AT_decl_line   : 271     
  DW_AT_sibling     : <0x421>
26d: DW_TAG_member
  DW_AT_name        : _flags        
  DW_AT_decl_file   : 6       
  DW_AT_decl_line   : 272     
  DW_AT_type        : <0x190> 
  DW_AT_data_member_location: (DW_OP_plus_uconst: 0)
...
657: DW_TAG_typedef
  DW_AT_name        : Bool  
  DW_AT_decl_file   : 1       
  DW_AT_decl_line   : 162     
  DW_AT_type        : <0x16d> 
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Type Tree

const unsigned char * volatile p;
A volatile pointer to a constant character. 

This is encoded in DWARF as: 

DW_TAG_variable (p)  →
  DW_TAG_volatile_type  →
    DW_TAG_pointer_type  →
      DW_TAG_const_type  →
        DW_TAG_base_type (unsigned char)
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Data Structures

● DW_TAG_struct_type, DW_TAG_class_type, 
DW_TAG_union_type, DW_TAG_interface_type
● Define structure, class, union, Java interface
● DIE “owns” members of the struct/class/union/interface
● DW_TAG_member

– Similar to a variable definition

– Instead of memory location, has offset from start of object

● DW_TAG_array_type
● Define array of same type object
● Index is a subrange.  In C, [0..n).  
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Locating Data

● DW_AT_location – location description
● Single location description – fixed lifetime

– Simple location – contiguous location (reg or memory)

– Composite location – data split into pieces

– Omitted – “variable optimized away”

● Multiple location description – Location lists
– Reference to .debug_loc

– Define where data is located for specific PC ranges

– Object can change location over its lifetime

● DWARF expressions
● Complete stack-oriented expression evaluation
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Locating Code

● DW_AT_low_pc – starting or only address

● DW_AT_high_pc – ending address

● DW_AT_ranges – non-contiguous range

● Reference to .debug_ranges
● Pairs of (beginning,ending) offset from base address
● Base Address

– Default to start of compilation unit
– May be explicitly specified
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Mapping Address to Source

● Needed to set breakpoints, identify fault location, step through 
source

● .debug_line section

● Conceptual contents
● One row for each code memory address
● Source file name, line number, column
● Flag beginning of statement
● Flag beginning of basic block
● Flag end of prologue, start of epilogue
● Instruction set (e.g., ARM vs Thumb)

● Problem – unencoded table would be huge
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Compressing Line Information

● Finite State Machine generates line info table
● Line Number Program

● Operations drive FSM to generate next row
● Duplicate rows are eliminated
● Each value described as register, copied to next row 

unless changed
● Example ops

– Add integer to source line number
– Set statement, block, prologue, epilogue flag
– Advance PC
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Speeding Up Debugging

● .debug_pubnames
● Names of global objects and functions
● Reference to DIE defining object or function

● .debug_pubtypes
● Names of types
● Reference to DIE describing type

● .debug_aranges
● Address start and length
● Reference to compilation unit
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Call Frame Information
● Describe details of function call

● Locate previous frame
● Locate saved register values

● Permit unwinding/walking stack
● CIE – Common Information Entry
● FDE – Frame Description Entry

● Finite State Machine indexed by PC address

● Variant (.eh_frame) used to implement C++ 
exception handling
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Compressed DWARF

● Uncompressed TAG/Attribute/Value huge
● Major impetus for DWARF 1 to DWARF 2 migration

● Multiple approaches to compression
● Data encoding – uleb, sleb
● Indirection – references to other tables
● Abbreviation table
● Implicit sibling pointers

● Separate data for duplicate elimination



Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

46

GCC Debug Options

● -g 
● Generate default debug info (DWARF)

● -g3
● Generate debug info including macro descriptions

● -ggdb
● Generate debug info for gdb (most expressive)

● -gdwarf[234]
● Generate DWARF 2, 3, 4 debug info

● May use some extensions from later versions

● DWARF 4 requires gdb-7.0 for best results

● -gstrict-dwarf
● Disallow extensions from later standard versions
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Printing DWARF with Readelf

● readelf -w
● Dump all DWARF data

● readelf -w[lLiaprmfFsoRt]
● Print selected DWARF data

– raw line table, decoded line table, info, abbrev, 
pubnames, aranges, macro, raw frames, frames-interp, 
str, location, ranges, public types
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DWARF version 4

● Released June 10, 2010

● Extensive review and update of documentation

● Support for VLIW architectures (IA64)

● Separate type units – improved compression

● Improved language support
● Fortran – identify main subprogram
● C++ -- rvalue references, constant exprs, template aliases, 

template parameters, strong enum types
● Generalize packed array descriptions
● Support profile-based optimizations
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DWARF version 5

● Anticipated release date late 2013
● Support C++11 features: atomic
● Separate debug data from object files
● Improved macro description
● Improve debug of optimized code

● Optimized variables

● Improved debugger accelerator data
● Restructure documentation
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DWARF Committee

● Committee website:  dwarfstd.org
● Independent, no membership fees
● Open standard available without charge
● Broad based

● Companies represented:
– Apple      ARM   Concurrent Computer
– Eager Consulting Google HP
– IBM Intel RedHat Rogue Wave
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Questions/Answers

● Michael Eager – eager@eagercon.com

● DWARF Website – dwarfstd.org

● Submit question/suggestion about standard

– dwarfstd.org/Comment.php

● DWARF wiki – wiki.dwarfstd.org

● DWARF Discussion List
● dwarf-discuss@lists.dwarfstd.org
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