
DWARF Debugging Format

Michael J. Eager
eager@eagercon.com

How the Compiler Tells Its
Secrets to the Debugger

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

2

How Program Development
is Supposed to Work

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

3

Developer Has Great Idea

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

4

Translates Great Idea
into C code

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

5

Compiler translates
C code to machine language

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

6

Everything works!!

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

7

Real World Program Development

● Developer Has Great Idea
● Translates Great Idea into C code

● Compiler translates C to machine language

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

8

Something Unexpected Happens

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

9

Developer uses debugger to
understand the translation from

Great Idea to machine language

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

10

Many hours and many cups of
coffee later translation error is fixed

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

11

Debugging

 Great Idea ==>
 C code ==>
 machine language
● Two translation steps
● We look at the second translation to find

problems in the first translation

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

12

What We Think the Compiler Does

● Reads clear and complete program source
● Linear translation from C code into

machine language
● Follows programmer's directions to the letter

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

13

What Really Happens

● Compiler believes it knows better than the
developer. Reorders and reorganizes the
program to improve performance
● If it isn't prohibited, it's permitted
● If it isn't defined, compiler free to do anything

● Multi-step process of incremental optimization
● Each time a change is made, a little bit of

information is lost

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

14

Goals of the Compiler

● Correctly interpret C (or other) language
● Compare with language standard
● Verify with test suite and regression tests

● Generate correct machine language
● Defined by architecture manual
● Verify with test suite

● Optimize code
● Optimized result is the same as unoptimized code
● Verify with test suite

● Generate debugging info

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

15

What the Debugger Knows

● Info from object file (executable, obj, library)
● Symbol names and addresses

– Global

– Local (some)

● Info from processor
● Memory contents
● Register contents

● Info from system
● Library locations
● How to control programs

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

16

What DWARF Tells the Debugger

● Source files – name and path
● Names of functions, arguments, globals, locals
● Type descriptions
● Types of functions, variables, and parameters
● Block structure of program
● Mapping between source and object (line<=> address)
● Variable location (registers/memory)
● How to unwind stack

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

17

What DWARF Doesn't Tell

● Machine characteristics
● Registers, address size, instructions

● OS characteristics
● ABI

● Calling conventions

● Program flow
● Semantics

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

18

DWARF History

● Developed at AT&T as part of Unix SVR4

● PLSIG (Programming Languages SIG) of Unix International, Inc. formed in
1988

● DWARF version 1 (standard published 1992)
● Compatible with AT&T SVR4 DWARF format

● DWARF version 2 (draft standard released 1993)
● Not compatible with DWARF version 1

● Broader functionality

● More compact representation

● DWARF Committee reconstituted October, 1999

● DWARF version 3 (standard published 2005)
● Compatible with DWARF version 2

● DWARF version 4 (standard published 2010)

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

19

DWARF Philosophy

● Permissive standard
● Describes what various DWARF constructs mean
● Does not mandate generation of specific constructs

● Extensible
● Supports user extensions
● Allows novel uses of existing attributes

● Upward compatible
● Consumers (i.e. debuggers) can read later versions
● Skip over unknown DIEs

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

20

DWARF Goals

● Permit accurate and complete description of
source to object translation
● Whether a particular compiler generates good or

poor DWARF is a Quality of Implementation issue

● Compact data representation
● Efficient generation
● Open standard, transparent process

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

21

Languages and Processors

●Block structured procedural languages

C
C++
Cobol
Java

x86
IA32
ARM

Ada
Fortran
Modula
Pascal

●Von Neuman or Harvard architecture
IA64
PowerPC
MIPS

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

22

Basic Concepts

● DWARF can be used in any object file
● Most commonly associated with ELF

● Multiple data sections
● DWARF sections start with .debug_

– .debug_info – Program organization
● Functions & Variables

– .debug_line – Line <=> address mapping
– Several other sections

● Compression – strings, abbreviations, types
● Other info – call frames, indexes – address and name

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

23

Basic Data Structure

● Debugging Information Entry (DIE)
● Each DIE has a TAG which identifies purpose

– DW_TAG_compile_unit – Describe a compilation unit

– DW_TAG_subprogram – Describe a subroutine

– DW_TAG_variable – Describe a variable

– DW_TAG_pointer_type – Describe various types

– DW_TAG_formal_parameter – Describe arguments

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

24

Basic Data Structure

● Each DIE has one or more attribute/value pairs
● Each attribute has a name

– Describes meaning of attribute

– Value specified for each attribute

– Data format specified in attribute encoding

● Examples
– DW_AT_name – Name of object DIE describes

– DW_AT_location – Source location of object

– DW_AT_low_pc – Start address of object

– DW_AT_high_pc – End address of object

– DW_AT_type – Pointer to DIE describing type

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

25

DWARF Info Tree Structure

● Match block structure of source program
● Each DIE has zero or more sibling DIEs
● Each DIE has zero or more children
● Each Compilation is represented by a

Compilation Unit DIE
● Everything is a child of the Comp Unit DIE

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

26

DWARF Info Tree Structure

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

27

Compile Unit DIE

● Describe compilation

● Source location

● Compilation directory

● Producer info

● Programming language

● Low and high PC range

● Pointers to other data
● Line number info
● Macro info

● Children DIEs describe the program

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

28

Compile Unit DIE

 b3: DW_TAG_compile_unit
 DW_AT_producer : GNU C 4.6.1 20110627
 DW_AT_language : 1 (ANSI C)
 DW_AT_name : bzip2.c
 DW_AT_comp_dir : /ext/yocto/.../bzip2-1.0.6
 DW_AT_low_pc : 0x0
 DW_AT_entry_pc : 0x0
 DW_AT_ranges : 0x260
 DW_AT_stmt_list : 0x82

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

29

Subroutine DIE

● DW_TAG_subprogram
● Describe subroutine, function, inlined subroutine, entry

point, declaration vs. definition
● Subroutine name and source location
● Visibility – whether it is external
● Reference to return type DIE
● Low and high PC
● Prototyped flag

● “Owns” children DIEs: arguments, variables, types,
and blocks within subroutine

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

30

Subroutine DIE

1ba2: DW_TAG_subprogram
 DW_AT_external : 1
 DW_AT_name : main
 DW_AT_decl_file : 1
 DW_AT_decl_line : 1776
 DW_AT_prototyped : 1
 DW_AT_type : <0x683>
 DW_AT_low_pc : 0x80491e0
 DW_AT_high_pc : 0x8049d90
 DW_AT_frame_base : 0x22e3 (location list)
 DW_AT_sibling : <0x212a>

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

31

Variable DIE

● Describe data object
● Variable name
● Reference to type DIE
● Source location
● Declaration vs. definition
● Run time location
● Default value
● Constant value

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

32

Variable DIE

1c28: DW_TAG_variable
 DW_AT_name : decode
 DW_AT_decl_file : 1
 DW_AT_decl_line : 1782
 DW_AT_type : <0x657>
 DW_AT_location : 0x24ed (location list)
...
213b: 71 (DW_TAG_variable)
 DW_AT_name : stdin
 DW_AT_decl_file : 5
 DW_AT_decl_line : 165
 DW_AT_type : <0x465>
 DW_AT_external : 1
 DW_AT_declaration : 1

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

33

Base Type DIE

● Describe data type that is directly implemented by
machine hardware

● Name of type
● Examples: int, long, unsigned char, etc.

● Encoding
● Example: address, boolean, signed, float, decimal

● Size
● Size in bytes or bits needed to hold value
● Offset within storage unit

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

34

Base Type DIE
d4: DW_TAG_base_type
 DW_AT_byte_size : 2
 DW_AT_encoding : 7 (unsigned)
 DW_AT_name : short unsigned int
db: DW_TAG_base_type
 DW_AT_byte_size : 4
 DW_AT_encoding : 7 (unsigned)
 DW_AT_name : unsigned int
...
6d: DW_TAG_base_type
 DW_AT_byte_size : 1
 DW_AT_encoding : 8 (unsigned char)
 DW_AT_name : unsigned char
...
f7: DW_TAG_base_type
 DW_AT_byte_size : 4
 DW_AT_encoding : 5 (signed)
 DW_AT_name : int

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

35

Composite Type DIEs

● Type DIE constructed from references to other
type DIEs, either Base Type or Composite Type

● Const_type, volatile_type
● Represent “const” or “volatile” qualifier

● Pointer_type
● Represent pointer to qualifier (“*”)

● Typedef
● Eventually reach Base Type

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

36

Composite Type DIEs
260: DW_TAG_structure_type
 DW_AT_name : _IO_FILE
 DW_AT_byte_size : 148
 DW_AT_decl_file : 6
 DW_AT_decl_line : 271
 DW_AT_sibling : <0x421>
26d: DW_TAG_member
 DW_AT_name : _flags
 DW_AT_decl_file : 6
 DW_AT_decl_line : 272
 DW_AT_type : <0x190>
 DW_AT_data_member_location: (DW_OP_plus_uconst: 0)
...
657: DW_TAG_typedef
 DW_AT_name : Bool
 DW_AT_decl_file : 1
 DW_AT_decl_line : 162
 DW_AT_type : <0x16d>

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

37

Type Tree

const unsigned char * volatile p;
A volatile pointer to a constant character.

This is encoded in DWARF as:

DW_TAG_variable (p) →
 DW_TAG_volatile_type →
 DW_TAG_pointer_type →
 DW_TAG_const_type →
 DW_TAG_base_type (unsigned char)

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

38

Data Structures

● DW_TAG_struct_type, DW_TAG_class_type,
DW_TAG_union_type, DW_TAG_interface_type
● Define structure, class, union, Java interface
● DIE “owns” members of the struct/class/union/interface
● DW_TAG_member

– Similar to a variable definition

– Instead of memory location, has offset from start of object

● DW_TAG_array_type
● Define array of same type object
● Index is a subrange. In C, [0..n).

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

39

Locating Data

● DW_AT_location – location description
● Single location description – fixed lifetime

– Simple location – contiguous location (reg or memory)

– Composite location – data split into pieces

– Omitted – “variable optimized away”

● Multiple location description – Location lists
– Reference to .debug_loc

– Define where data is located for specific PC ranges

– Object can change location over its lifetime

● DWARF expressions
● Complete stack-oriented expression evaluation

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

40

Locating Code

● DW_AT_low_pc – starting or only address

● DW_AT_high_pc – ending address

● DW_AT_ranges – non-contiguous range

● Reference to .debug_ranges
● Pairs of (beginning,ending) offset from base address
● Base Address

– Default to start of compilation unit
– May be explicitly specified

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

41

Mapping Address to Source

● Needed to set breakpoints, identify fault location, step through
source

● .debug_line section

● Conceptual contents
● One row for each code memory address
● Source file name, line number, column
● Flag beginning of statement
● Flag beginning of basic block
● Flag end of prologue, start of epilogue
● Instruction set (e.g., ARM vs Thumb)

● Problem – unencoded table would be huge

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

42

Compressing Line Information

● Finite State Machine generates line info table
● Line Number Program

● Operations drive FSM to generate next row
● Duplicate rows are eliminated
● Each value described as register, copied to next row

unless changed
● Example ops

– Add integer to source line number
– Set statement, block, prologue, epilogue flag
– Advance PC

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

43

Speeding Up Debugging

● .debug_pubnames
● Names of global objects and functions
● Reference to DIE defining object or function

● .debug_pubtypes
● Names of types
● Reference to DIE describing type

● .debug_aranges
● Address start and length
● Reference to compilation unit

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

44

Call Frame Information
● Describe details of function call

● Locate previous frame
● Locate saved register values

● Permit unwinding/walking stack
● CIE – Common Information Entry
● FDE – Frame Description Entry

● Finite State Machine indexed by PC address

● Variant (.eh_frame) used to implement C++
exception handling

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

45

Compressed DWARF

● Uncompressed TAG/Attribute/Value huge
● Major impetus for DWARF 1 to DWARF 2 migration

● Multiple approaches to compression
● Data encoding – uleb, sleb
● Indirection – references to other tables
● Abbreviation table
● Implicit sibling pointers

● Separate data for duplicate elimination

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

46

GCC Debug Options

● -g
● Generate default debug info (DWARF)

● -g3
● Generate debug info including macro descriptions

● -ggdb
● Generate debug info for gdb (most expressive)

● -gdwarf[234]
● Generate DWARF 2, 3, 4 debug info

● May use some extensions from later versions

● DWARF 4 requires gdb-7.0 for best results

● -gstrict-dwarf
● Disallow extensions from later standard versions

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

47

Printing DWARF with Readelf

● readelf -w
● Dump all DWARF data

● readelf -w[lLiaprmfFsoRt]
● Print selected DWARF data

– raw line table, decoded line table, info, abbrev,
pubnames, aranges, macro, raw frames, frames-interp,
str, location, ranges, public types

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

48

DWARF version 4

● Released June 10, 2010

● Extensive review and update of documentation

● Support for VLIW architectures (IA64)

● Separate type units – improved compression

● Improved language support
● Fortran – identify main subprogram
● C++ -- rvalue references, constant exprs, template aliases,

template parameters, strong enum types
● Generalize packed array descriptions
● Support profile-based optimizations

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

49

DWARF version 5

● Anticipated release date late 2013
● Support C++11 features: atomic
● Separate debug data from object files
● Improved macro description
● Improve debug of optimized code

● Optimized variables

● Improved debugger accelerator data
● Restructure documentation

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

50

DWARF Committee

● Committee website: dwarfstd.org
● Independent, no membership fees
● Open standard available without charge
● Broad based

● Companies represented:
– Apple ARM Concurrent Computer
– Eager Consulting Google HP
– IBM Intel RedHat Rogue Wave

Linux Collaboration Summit
April 5, 2012

DWARF Debugging Format
Michael J. Eager

51

Questions/Answers

● Michael Eager – eager@eagercon.com

● DWARF Website – dwarfstd.org

● Submit question/suggestion about standard

– dwarfstd.org/Comment.php

● DWARF wiki – wiki.dwarfstd.org

● DWARF Discussion List
● dwarf-discuss@lists.dwarfstd.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

