Linux collaboration summit
April, 2012
San Francisco, CA

Let's kill all

proprietary

drivers for
good

Luis R. Rodriguez ‘
Adrian Chadd .

Qualcomm Atheros

Prioritize APls / code

Linux kernel drivers
Localize usage of the GPL
Pick a BSD, call for

Replace "internal codebases" in favor of

working with two upstreams:

o Linux
o BSD

e |f driver code unification is desired, make
driver unification
ANALSs, proactive engineering strategies

Where did this come from?

Atheros / Sam Leffler maintains MadWifi uses net80211
BSDs picks up net80211

Linux net80211 -

Sam Leffler, FreeBSD, moves on

Linux gets mac80211, cfg80211

Community upstreams ath5k with 's help to share HAL code with
OpenBSD

Linux community MadWifi

Luis joins Atheros - Linux hacker

Upstreaming of the Linux ath9k driver by Atheros under ISC
Broadcom follows

Adrian Chadd picks up Sam Leffler's work

Adrian Chadd joins Atheros - FreeBSD hacker

Review of internal driver infrastructure

Proposals for how to help internal driver infrastructure

A pattern on proprietary drivers
1
metrics off the charts
non-upstream
Linux vendor drivers

{c) 2008 Focus Shift/OSNews/Thom Holwerda - http://www.osnews.com/comics

Why? How did we get here?

® BSD, Linux, Microsoft, Apple, Solaris, QNX, etc

® \Vith the PC, explosion of e
components, hundreds of for different OSes

® \With mobile, explosion of other
® OS priorities based on type of user

® Linux only started becoming a priority on the
"desktop" recently

® Microsoft, Apple drivers: good run time tests,
validation, nice shiny certification logos

® Not all FOSS projects have good software..
® Linux, BSDs: software architect assholes

What else Is involved in delivering

a driver?
! |
It's not just about writing code! That even work!

e There may be compliance testing and certifications
needed before a product can be sold

e There may also be (a lot, | hope) a lot of internal
standards and regression testing

e There may be some very specific customer
extensions that they've paid for, but not allowed for
public consumption

e There may be cross-licencing of patents..

e .. and some commercial agreements.

These may make it difficult to open up a commercially
developed codebase.

What about multi-OS drivers?
Y

e Because there's than just
writing the code..
e .. there may be pressure to share as much code as
possible between platforms
e The Atheros softmac driver targets:
o Windows (XP, Vista, 7, 8)
o Linux (various 2.6, 3.x kernels)
o Legacy - vxWorks, *BSD
e Compare the of a 10/100 Ethernet
NIC driver to what is required for 802.11 support
o Do you really think it's feasible to reimplement,
from scratch, the entirety of an 802.11 stack for
each operating system?
o Will each OS / stack require its own full tests?

Multi-OS drivers - the problem
I D -

® But how much can you really ?

O What is actually, fundamentally different between OSes?

B device model, threading/locking model, network model, bus
model..

® \What do you end up having to do?
O Find the "middle ground" between all OS platforms

O This may not be the most { optimal, efficient, concise } way to
solve the problem

® FEvery company likely does it completely differently

O Tailored to their specific device needs
Can these even co-exist between companies?

O
o Companies , year after year
o Why?!

What is a crap driver?
1 |

e Don't use the word " " -- banned -- leads to crap
e Accepting crap means you realize you can improve software
e Crap can address run time functionality, really really well

o Doesn't mean its good

o prioritize and

e consider an for reinventing the wheel on fixing
iIssues

e , customers fork all your work

e In Linux, anything under drivers/staging

o , once you evolve, you must

accept its crap
e Examples even in the Linux kernel:

O Linux wireless regulatory, evolution
B Big vendor crap --> upstream --> crap --> re-architect
B Regulatory simulator in userspace

O Staging drivers, compat-wireless crap/ for patches
e Move on, adapt fast, evolve, accept criticism

Improve internal driver codebase
I D ——

e Linux porting issues:
o Always have to up
o Community collaborations not being merged back
o QCA developer program

Code modularization / component owners
Atomicity of changes

Annotation of fixes (Cc: stable)
Distributed development model

Clean kernel APIs / code

Benefits of collaborative development

Strategic of the GPL

Historically one license for one single project

BSD license first, GPL evolution

Linux embraces GPLv2

FSF engineers GPLv3

Linux stays on GPLv2

Linux and other projects use "Dual BSD/GPL" for some things,

ambiguity created

SFLC: !

o ath5k: HAL uses simple , 2 Clause BSD license

m Changes-licensed-under
r - Educate on usage, spread it

O ath9k: first fully permissively licensed driver
O Solaris ports ath9k to OpenSolaris, OpenSolaris dies

o Broadcom follows approach

Call for to be

Core kernel functionality: GPL

Arguments against: GPL enforcement will ensure giving back
o Alternative: to address corporate

investments

Are non-Linux GPL drivers possible?
I
e Yes but its a pain in the ass

e Andy Grover:
o GPLv2 - paravirt Windows driver

e Writing GPLv2 Windows drivers means
you become a mingw developer

® http:/groveronline.com/2008/07/mingw-cross-compilation-adventure/

e S0 possible but painful at present

e Intel drivers: some permissively licensed
files, mostly headers

e Better use a fully permissive licensed
Linux drivers, share with BSDs

http://groveronline.com/2008/07/mingw-cross-compilation-adventure/

BSD usage and call for unification
I D —

e BSDs split off for many reasons
° by vendors:
o Guidelines for using permissively licensed drivers on Linux
o If you can address permissively licensed Linux drivers you should
be able to address BSD as well

o if BSDs fragmentation was addressed
e If you want in kernel:
o Use BSD
o But you still need to address patent grants
N permissive licenses have implicit patent grant
m Better for both BSD and Linux
o Is BSD unification possible?

o Not the place to ask -- but we are asking

o Lets start wiith 802.11 unification ideas
e BSD vendor summits

o Run a few times a year, both standalone and at conferences
e BSD conventions

o BSDCan, EuroBSDCon, AsiaBSDCon, others here and there..

Intellectual Property
I D —

e Patent :
o Industry is patent trigger happy
o Software patents in FOSS: can of worms

o This issue sucks, let us, engineers

e Kernel:
o Linux kernel : deal with it!
o Help sharing:
m New drivers: permissively licensed
o Prioritize simple and API/ over adding IP in kernel. Early
architectural review to
o , otherwise:
m Explicit patent grant: RCU -- GPLv2 + explicit patent grant
Documentation/RCU/RTFP.txt
o BSD kernel: permissively license patent grant

o : , we tried, although GPLv2 compatible
e Userspace:
o WebM VPS8 lesson: +

o Open solution + explicit patent grant for hardware vendor?
o Other ideas? Innovate strategies
e \We are not attorneys!
o Attorneys can address this at the Legal tracks
o We are engineers

Business justifications
1 |

/ lead Operating System ecosystems
® Bring benefit of to non-
Linux Operating Systems
® (Can the community be relied on?
O - understand it
O - can leverage off of this work
O (Geographically spread
O Talent scouting
® Can the community be ?
O Hobbyists - top contributor to the Linux kernel
O GSoC

Collaborative development
I D -
e Hobbyists,
O Linux
o BSD
O Wikipedia

e Ideal situation: a good balance

o Educate: NDA, public specs, wikis
o Stimulate motivation
o Stimulate innovation

e Can you rely on this? Let's review history

Contributions to Linux

18
16
14
12
-None
-»-Unknown
10 +Red Hat
Novell
V' g +IBM
8 Intel
T — +Microsoft
6

0 M =t =
v2.6.33 v2.6.34 v2.6.35 v2.6.36 v2.6.37 v2.6.38

v2.6.39 v3.0 v3.1 v3.2 v3.3

ath9k contributions upstream

180

160

140

120

100 |
&Atheros

--Community
80

60

40

20

0
v2.6.27 v2.6.28 v2.6.29v2.6.30 v2.6.31v2.6.32v2.6.33v2.6.34 v2.6.35 v2.6.36v2.6.37v2.6.38v2.6.39 v3.0 v3.1 v32 v33

What is Qualcomm Atheros doing?
1 |

e |ets start off
e Address an Ethernet driver first
e Linux alx driver:
O on
O Permissive license considerations hopefully being
reviewed
O Example of possible issues in driver unification
utopia
e |[f not Ethernet, lets work on the next new
driver, whatever that is, the simpler the
better

e Bluetooth: too simple, what's next?

Can we do better?
Y

e |[s driver unification a ?
e Can we unify drivers on at least

O Linux
o BSD
e Two options:
o what's in it for
m Better coordination, testing, do we care?
o . punt problem back to companies
m Only two upstreams possible: BSD, Linux

If unification is possible
1 |

e Lesson to be learned:
o Corporations the wheels, horribly
o Can the community help?
o If we want to help kill proprietary drivers, lets talk about it
e Live with at the very least two upstreams:
o Linux
o BSD
e coccinelle spatch
o SMPL - language of what patches should look like
o Used in the Linux kernel for code sanity checks
o Used to help clean drivers out of drivers/staging
o Used to help address large kernel API changes
e spdiff
o Shiny new tool
o Lets you skip writing SMPL
o Automatic inference of high level specifications of changes to
structured data
o Give it two patches: it gives you SMPL

The end

Objectives to consider for killing proprietary
drivers in the long run as engineers. Each
one may take

e Architecturally punt IP "problem” to
userspace moving forward

e Dual BSD / Linux strategy

e Driver unification, a community problem

Attorney's homework: IP strategies in userspace

