
Let's kill all
proprietary
drivers for

good
Luis R. Rodriguez

Adrian Chadd
Qualcomm Atheros

Linux collaboration summit
April, 2012

San Francisco, CA

● Prioritize clean kernel APIs / code
● Permissively license Linux kernel drivers
● Localize usage of the GPL
● Pick a BSD, call for unification of BSDs
● Intellectual property strategies
● Replace "internal codebases" in favor of

working with two upstreams:
○ Linux
○ BSD

● If driver code unification is desired, make
driver unification a community problem

● WANALs, proactive engineering strategies

How to kill proprietary drivers

● Atheros / Sam Leffler maintains MadWifi uses net80211
● BSDs picks up net80211
● Linux rejects net80211 - oh well
● Sam Leffler, FreeBSD, moves on
● Linux gets mac80211, cfg80211
● Community upstreams ath5k with SFLC's help to share HAL code with

OpenBSD
● Linux community abandons MadWifi
● Luis joins Atheros - Linux hacker
● Upstreaming of the Linux ath9k driver by Atheros under ISC
● Broadcom follows ISC license strategy
● Adrian Chadd picks up Sam Leffler's work
● Adrian Chadd joins Atheros - FreeBSD hacker
● Review of internal driver infrastructure
● Proposals for how to help internal driver infrastructure

Where did this come from?

WTF metrics off the charts
 for all non-upstream
Linux vendor drivers

A pattern on proprietary drivers

● BSD, Linux, Microsoft, Apple, Solaris, QNX, etc
● With the PC, explosion of new hardware

components, hundreds of drivers for different OSes
● With mobile, explosion of other new hardware
● OS priorities based on type of user
● Linux only started becoming a priority on the

"desktop" recently
● Microsoft, Apple drivers: good run time tests,

validation, nice shiny certification logos
● Not all FOSS projects have good software.. but
● Linux, BSDs: software architect assholes

Why? How did we get here?

It's not just about writing code! That may even work!
● There may be compliance testing and certifications

needed before a product can be sold
● There may also be (a lot, I hope) a lot of internal

standards and regression testing
● There may be some very specific customer

extensions that they've paid for, but not allowed for
public consumption

● There may be cross-licencing of patents..
● .. and some commercial agreements.

These may make it difficult to open up a commercially
developed codebase.

What else is involved in delivering
a driver?

● Because there's more to writing a driver than just
writing the code..

● .. there may be pressure to share as much code as
possible between platforms

● The Atheros softmac driver targets:
○ Windows (XP, Vista, 7, 8)
○ Linux (various 2.6, 3.x kernels)
○ Legacy - vxWorks, *BSD

● Compare the complexity of a simple 10/100 Ethernet
NIC driver to what is required for 802.11 support
○ Do you really think it's feasible to reimplement,

from scratch, the entirety of an 802.11 stack for
each operating system?

○ Will each OS / stack require its own full tests?

What about multi-OS drivers?

● But how much can you really share?
○ What is actually, fundamentally different between OSes?

■ device model, threading/locking model, network model, bus
model..

● What do you end up having to do?
○ Find the "middle ground" between all OS platforms
○ This may not be the most { optimal, efficient, concise } way to

solve the problem
● Every company likely does it completely differently

○ Tailored to their specific device needs
○ Can these even co-exist between companies?
○ Companies reinventing the wheel, year after year
○ Why?!

Multi-OS drivers - the problem

● Don't use the word "crap" -- banned -- leads to crap
● Accepting crap means you realize you can improve software
● Crap can address run time functionality, really really well

○ Doesn't mean its good
● Does not prioritize code readability and long term maintenance
● Does not consider an ecosystem for reinventing the wheel on fixing

issues
● Branching hell, customers fork all your work
● In Linux, anything under drivers/staging TAINT_CRAP
● Even good drivers can become crap, once you evolve, you must

accept its crap
● Examples even in the Linux kernel:

○ Linux wireless regulatory, evolution
■ Big vendor crap --> upstream --> crap --> re-architect
■ Regulatory simulator in userspace

○ Staging drivers, compat-wireless crap/ for patches
● Move on, adapt fast, evolve, accept criticism

What is a crap driver?

● Linux porting issues:
○ Always have to clean code up
○ Community collaborations not being merged back
○ QCA developer program

● Code modularization / component owners
● Atomicity of changes
● Annotation of fixes (Cc: stable)
● Distributed development model
● Clean kernel APIs / code
● Benefits of collaborative development

Improve internal driver codebase

● Historically one license for one single project
● BSD license first, GPL evolution
● Linux embraces GPLv2
● FSF engineers GPLv3
● Linux stays on GPLv2
● Linux and other projects use "Dual BSD/GPL" for some things,

ambiguity created
● SFLC: GPL-Compatible OK!

○ ath5k: HAL uses simple ISC, 2 Clause BSD license
■ Changes-licensed-under
■ Signed-off-by - Educate on usage, spread it

○ ath9k: first fully permissively licensed driver
○ Solaris ports ath9k to OpenSolaris, OpenSolaris dies
○ Broadcom follows ISC license approach

● Call for drivers to be permissively licensed
● Core kernel functionality: GPL
● Arguments against: only GPL enforcement will ensure giving back

○ Alternative: proactive engineering to address corporate
investments

Strategic localization of the GPL

● Yes but its a pain in the ass
● Andy Grover:

○ GPLv2 - paravirt Windows driver
● Writing GPLv2 Windows drivers means

you become a mingw developer
● http://groveronline.com/2008/07/mingw-cross-compilation-adventure/

● So possible but painful at present
● Intel drivers: some permissively licensed

files, mostly headers
● Better use a fully permissive licensed

Linux drivers, share with BSDs

Are non-Linux GPL drivers possible?

http://groveronline.com/2008/07/mingw-cross-compilation-adventure/

● BSDs split off years ago for many reasons
● Motivate BSD contributions by vendors:

○ Guidelines for using permissively licensed drivers on Linux
○ If you can address permissively licensed Linux drivers you should

be able to address BSD as well
○ Would be nice if BSDs fragmentation was addressed

● If you want proprietary bells / whistles in kernel:
○ Use BSD
○ But you still need to address patent grants

■ Arguably permissive licenses have implicit patent grant
■ Better avoid patents in kernel for both BSD and Linux

● Is some BSD unification possible?
○ Not the place to ask -- but we are asking
○ Lets start wiith 802.11 unification ideas

● BSD vendor summits
○ Run a few times a year, both standalone and at conferences

● BSD conventions
○ BSDCan, EuroBSDCon, AsiaBSDCon, others here and there..

BSD usage and call for unification

● Patent trolling:
○ Industry is patent trigger happy
○ Software patents in FOSS: can of worms

○ This issue sucks, let us, engineers simplify the problem!
● Kernel:

○ Linux kernel GPLv2: deal with it!
○ Help sharing: localize GPL

■ New drivers: permissively licensed
○ Prioritize simple and clean kernel API / drivers over adding IP in kernel. Early

architectural review to address IP
○ Punt IP to userspace, otherwise:

■ Explicit patent grant: RCU -- GPLv2 + explicit patent grant
Documentation/RCU/RTFP.txt

○ BSD kernel: permissively license patent grant theory
○ ClearBSD license: not accepted, we tried, although GPLv2 compatible

● Userspace:
○ WebM VP8 lesson: FOSS license + separate patent grant
○ Open solution + explicit patent grant for hardware vendor?
○ Other ideas? Innovate strategies

● We are not attorneys!
○ Attorneys can address this at the Legal tracks
○ We are engineers

Intellectual Property

● Streamline / lead Operating System ecosystems
● Bring benefit of collaborative development to non-

Linux Operating Systems
● Can the community be relied on?

○ Motivation - understand it
○ Innovation - can leverage off of this work
○ Geographically spread
○ Talent scouting

● Can the community be accounted for?
○ Hobbyists - top contributor to the Linux kernel
○ GSoC

Business justifications

● Hobbyists, top contributors
○ Linux
○ BSD
○ Wikipedia

● Ideal situation: a good balance
○ Educate: NDA, public specs, wikis
○ Stimulate motivation
○ Stimulate innovation

● Can you rely on this? Let's review history

Collaborative development

Linux kernel contributions

Linux kernel ath9k contributions

● Lets start off simple
● Address an Ethernet driver first
● Linux alx driver:

○ Rejected on good technical grounds
○ Permissive license considerations hopefully being

reviewed
○ Example of possible issues in driver unification

utopia
● If not Ethernet, lets work on the next new

driver, whatever that is, the simpler the
better

● Bluetooth: too simple, what's next?

What is Qualcomm Atheros doing?

● Is driver unification a pipedream?
● Can we unify drivers on at least

○ Linux
○ BSD

● Two options:
○ Help with unification - what's in it for

■ Better coordination, testing, do we care?
○ Go away: punt problem back to companies

■ Only two upstreams possible: BSD, Linux

Can we do better?

● Lesson to be learned:
○ Corporations reinventing the wheels, horribly
○ Can the community help?
○ If we want to help kill proprietary drivers, lets talk about it

● Live with at the very least two upstreams:
○ Linux
○ BSD

● coccinelle spatch
○ SMPL - language of what patches should look like
○ Used in the Linux kernel for code sanity checks
○ Used to help clean drivers out of drivers/staging
○ Used to help address large kernel API changes

● spdiff
○ Shiny new tool
○ Lets you skip writing SMPL
○ Automatic inference of high level specifications of changes to

structured data
○ Give it two patches: it gives you SMPL

If unification is possible

Objectives to consider for killing proprietary
drivers in the long run as engineers. Each
one may take time to achieve.

● Architecturally punt IP "problem" to

userspace moving forward
● Dual BSD / Linux strategy
● Driver unification, a community problem

Attorney's homework: FOSS friendly IP strategies in userspace

The end

