

GDB on ARM
Linaro Contributions

Dr. Ulrich Weigand
<ulrich.weigand@linaro.org>

<ulrich.weigand@de.ibm.com>

mailto:ulrich.weigand@linaro.org
mailto:ulrich.weigand@de.ibm.com

Agenda

● What is Linaro?
● Native debugging enhancements

● Back-trace support
● Hardware break-/watchpoint support
● NEON vector register support

● Remote debugging enhancements
● Debugging native Android code

What is Linaro?

● An open source development consortium for ARM and the
embedded community

● Founded in June 2010. Mission:
● “to make it easier for ARM partners to deploy the latest technology

into optimized Linux based products”

● Not-for-profit software engineering company
● 130 Engineers as of end 2011

What does Linaro do?
● Delivers an optimized code base

● Kernel and vital middleware
● Applied across all member SoCs

● Tools
● Best compiler, debugger, profiler

● Enabled on the latest SoCs
● Cortex A8, A9, & A15 processors

● Delivered upstream
● Evaluation builds for key

distributions – Android, Chrome,
MeeGo, Ubuntu

● Test & Validation framework for
member SoCs

Where does Linaro fit?

Linaro Toolchain Working Group

● Linaro Toolchain releases
● Monthly GCC, GDB, QEMU releases

● Major focus areas
● Compiler performance improvements

– e.g auto-vectorizer, scheduler, ARM back-end ...
● Exploit latest ARM architecture features

– e.g. STT_GNU_IFUNC support, optimized string routines
● Support current hardware in QEMU
● Reliable debugging support

Native debugging enhancements

● Linaro focus areas
● Enhanced back-trace support

– Prologue parsing for Thumb-2 code
– Backtrace using ARM exception tables
– Backtrace out of kernel vector page
– Backtrace out of glibc system call stubs

● Support ARM hardware break-/watchpoints
● Support VFP/NEON registers in core files
● Fix numerous GDB test suite failures on ARM

Back-trace support: Background

Frame 3
Register Set

Frame 2
Register Set

Frame 0
Register Set

Unwind

Frame 1
Register Set

Unwind

Unwind

PC

PC

PC Unwind
Instructions

Memory

Kernel / ptrace interface

PC

Unwind
Instructions

Unwind
Instructions

End of stack

● Basic algorithm

● Start with initial register set
(frame #0)

● Extract PC from register set

● Determine register unwind
instructions at PC

– “Restore PC from LR”

– “Add 128 to SP”

– “Restore R8 from memory at
location (old) SP + 80”

– “Register R10 is unchanged”

– “Register R2 cannot be unwound;
its prior value is lost”

● Given old register set and
memory contents, apply unwind
instructions to construct register
set at next frame (frame #1)

● Repeat until uppermost frame is
reached

Back-trace support on ARM

● How to determine unwind instructions at PC
● Use DWARF-2 Call Frame Instructions (.debug_frame; on non-ARM also .eh_frame)

● Use ARM exception table information (.ARM.exidx / .ARM.extbl)

● Disassemble start of function containing PC and interpret prologue

● Hard-coded special cases (e.g. signal return trampolines, kernel vector page stubs)

● Challenges on ARM
● No .eh_frame section means no DWARF CFI in the absence of debug info

● ARM exception tables were not supported in GDB

● Glibc assembler code was not (always) annotated with ARM exception tables

● Prologue parsing did not handle the Thumb-2 instruction set

– Note that Thumb-2 is the default on current Ubuntu distributions

● Current status
● Support for all missing features added

● No GDB test case fails due to unwind problems

– This is true even in the absence of system library debug info packages

ARM hardware watchpoints

● Feature set
● Hardware watchpoints

– Trap when a pre-defined memory locations is modified

– Used to implement “watch” family of commands in GDB

● Hardware breakpoints

– Trap when execution reaches a specified address

– Used to implement “hbreak” family of commands in GDB

– Useful in particular to set breakpoints in non-modifyable code (e.g. ROM)

● Current status
● Hardware breakpoint/watchpoint support added to Linux kernel 2.6.37

● Support exploited by GDB 7.3

● Hardware pre-requisites
● Cortex-A8: limited HW support, not currently exploited by Linux kernel

● Cortex-A9: improved HW support, Linux kernel supports one single HW watchpoint

● Cortex-A15: full HW support, Linux (3.2) supports multiple HW watchpoints

VFP/NEON register sets

● Floating-point / vector registers on ARM
● Past architectures did not specify floating-point or vector registers; some

implementations provided those via co-processor extensions
● ARMv7 specifies VFPv3 and Advanced SIMD (“NEON”) extensions

– VFPv3-D16: 16 64-bit registers / 32 32-bit registers

– VFPv3-D32: 32 64-bit registers

– NEON: VFPv3-D32 registers re-interpreted as 16 128-bit registers

● Current status
● Access VFP/NEON register sets in native/remote debugging:

Supported with Linux kernel 2.6.30 / GDB 7.0
● Access VFP/NEON registers sets in core files:

Supported with Linux kernel 3.0 / GDB 7.3

Remote debugging enhancements

● Linaro focus areas
● Basic remote debugging via gdbserver

– Miscellaneous test suite fixes and enhancements
– Fix problems with “remote:” sysroot access

● Additional gdbserver / remote debugging features
– Support hardware break-/watchpoints
– Disable address space randomization
– Core file generation and “info proc”

Background: Native debugging

Application
Source code

Application
Executable

Compiler

System
Header files

System
Libraries

Application

GDB

ptrace

Background: Remote debugging

Application
Source code

Application
Executable

Cross-Compiler

Target
Header files

Target
Libraries

Application

Cross-GDB

Application
Executable

System
Libraries

Target
Libraries

GDBserver

Host Target

ptrace

remote
protocol

copy

Remote debugging challenges

● GDB accesses application binary / target libraries on host
● Assumes these are identical copies of files on target

– Debugging will (silently) fail if that assumption is violated

● Solution: Have gdbserver access files on target

– Contents forwarded via remote protocol

● Status: Implemented; enable via “set sysroot remote:”

● Native target and gdbserver target feature sets differ
● Both implement similar functionality but do not share code

● Some native features missing from remote debugging (and vice versa)

● Long-term solution: Code re-factoring to allow re-use of identical code base

● For now: Narrow gap by re-implementing missing gdbserver features

– Support hardware break-/watchpoints

– Disable address space randomization

– Core file generation and “info proc”

Debugging Android

● Android applications
● Usually implemented in Java, running on Dalvik
● “Native” components can be implemented via NDK
● GDB used to debug native Android code, usually configured as cross-

debugger with gdbserver running on the Android device

● “Android vs. Linux” differences visible to GDB
● Mostly caused by different libc (Bionic vs. glibc)
● ABI issues: jmp_buf layout (setjmp/longjmp); signal frames
● Debugging multi-threaded applications

– GDB relies on “libthread_db” shared library provided by C library to inspect
internal libc/libpthread data structure

– Bionic does not have libthread_db; Android “fakes” it by looking at kernel data
exported via /proc etc.

Debugging Android

● Current status
● Android NDK provides patched version of GDB and gdbserver
● Some third parties likewise provide versions with extra patches

● Goal
● Have Android as fully supported target OS

– Automatically detect whether target uses Bionic or glibc

● Support both GDB native and gdbserver remote debugging
● Everything available in upstream GDB without patches

● Work on this goal currently under way in Linaro

Summary

● Linaro is a not-for-profit engineering organization consolidating and
optimizing open source Linux software and tools for the ARM
architecture.

● One of the ongoing focus areas of Linaro's Toolchain Working Group
is enhancing the GNU Debugger to provide a first-class debugging
experience on current ARM-based devices.

● In GDB 7.3 Linaro contributed enhancements to bring the native
debugging experience on ARM on par with other platforms.

● In GDB 7.4 Linaro contributed enhancements to bring the remote
debugging experience, in particular on ARM, closer to the native
feature set.

● Currently, work is under way to help fully integrate support for
debugging Android native code into mainline GDB.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

