Snapdragon Application Processors:
Best Practices for Device Driver Development
Mobile: A Vibrant, Unprecedented Opportunity

~6.6B+ Mobile Connections

$1.5T Global Mobile Revenues

#1 Most Used Device

Continued Smartphone Momentum
Displacing Feature Phones

Annual Forecasted Smartphone Unit Shipments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipments</td>
<td>477</td>
<td>683</td>
<td>912</td>
<td>1,072</td>
<td>1,231</td>
<td>1,382</td>
</tr>
</tbody>
</table>

24% CAGR
2011–2016

Cumulative Smartphone Unit Sales Forecast Between 2012–2016

~5B

Source: Average of Gartner, Oct. ’12; Strategy Analytics, Aug. ’12

Qualcomm Technologies, Incorporated. All Rights Reserved.
Expanding Areas for Smartphone Innovation

- **CPU**
 - 2MB L2 (8064 only)
 - High Performance Floating Point
 - Custom Krait
 - Custom System Interconnect

- **GPU**
 - aSMP
 - Web Tech Innovations
 - Custom System Interconnect

- **DSP/Multimedia**
 - 20x Digital zoom
 - 21 MPix
 - Stereo 3D video
 - 1080P HD video
 - Browser with HTML5 and 1080p Flash
 - Computational Camera
 - Noise cancellation

- **Web Tech Innovations**
 - GPGPU Compute for Imaging/Video
 - (Renderscript, OpenCL, LLVM)
 - Stereoscopic Rendering
 - Accelerated WebGL
 - Profiling Tools

- **Custom System Interconnect**
 - 3D Wireless Display
 - MEMS

- **Modems**
 - LTE World Mode
 - LTE TDD
 - LTE Broadcast
 - TD-SCDMA
 - Power Optimization
 - VoLTE / SRVCC
 - Advanced Receivers

- **Connectivity**
 - GPS/GNSS
 - .11ac
 - Coexistence with WWAN
 - Coexistence with connectivity
 - BT
 - Miracast
 - Multiband

- **Sensors**
 - Accelerometer
 - Temperature
 - Gyroscope
 - IR Sensing
 - Humidity
 - Magnetometer
 - Proximity
 - Pressure
 - Ambient light
 - Gestures

- **Displays**
 - 1080P HD video
 - Stereoscopic Rendering
 - FlexRender™ Technology
 - Unified Shader Architecture
 - Low Power Innovations
 - Computational Camera
 - Noise cancellation

- **Profiles**
 - Profiling Tools
 - RenderScript, OpenCL, LLVM
 - Accelerated WebGL
 - Profiling Tools
Mobile is Redefining Computing

High Performance Computing

- High resolution screens
- Responsive devices
- Fast, always-on connectivity
- Rich multimedia experience

Without Compromising Mobility

- Sleek, ultra-light
- Longer battery life
- Thermal efficiency
Snapdragon for Embedded
Delivers a Best in Class System Solution
Benefits of Mobile Application Processors for Embedded

- **Power, Power, Power**
 - No Fans, no noise
 - Reduced thermal constraints rendering smaller industrial design
 - Same platform for battery powered or wall powered products
 - Lower cost power supplies

- **Feature rich, new capabilities**
 - Multiple HD Cameras and microphone arrays
 - Video/Audio/2D & 3D Graphics processors
 - Multiple HD Displays, Miracast
 - Sensors: 3D accelerometers, 3-axis gyro, compass, ambient light, proximity, temperature & pressure, humidity, medical, chemical, ultrasound pen and gestures, finger print reader, etc
 - Location services
 - Computer vision
Android Leading Global Smartphone OS Market Share

Why Android for Embedded?

- Known user experience
- Standardized development environment
- Skilled developer community
- Royalty free… (Google provides Android at no charge)
- Linux as the foundation
- Source code access, destiny in your hands
- Massive investment as a platform
DragonBoard™

A powerful, feature-rich, versatile and easy-to-use exposed board platform for component vendors, software and embedded developers. It consists of a complete System on Module (SoM) with a Snapdragon processor, a mini-ITX carrier board and a peripheral kit.
8060a DragonBoard™ Development Kit Specifications

* **Hardware**
 * Snapdragon S4 APQ8060A processor at up to 1.7GHz
 * 1GB of LPDDR2 RAM
 * 16GB of eMMC
 * MicroSD & Dual SATA I/F
 * HDMI out
 * GPS, Wi-Fi, Bluetooth 4.0 and FM radios
 * USB OTG & Host, UART, JTAG, & Ethernet
 * Front and back camera I/Fs – one 8MG Pix supplied with the kit
 * Dual Display I/F – one WVGA LCD with capacitive touch supplied with the kit
 * 5.1 Audio Line In/Out
 * Headset speaker and dual microphone I/Fs
 * Sensors – compass, accelerometer, gyro, and pressure.
 * PMIC with battery support
 * Interface options for NFC, TV Tuner, IR remote control, etc

* **Software**
 * Preloaded with Android 4.0
 * Additional OS support, including Debian Linux and other operating systems are on the road map
SYS 6400 – 8064 Development Platform

Processor and Memory
- Qualcomm Snapdragon S4 – APQ8064
- ARM15 class, 4-core, 1.7GHz, 2MB L2 cache
- Up to 2 GB on-board DDR3 (PCDDR 533MHz)

Network Interfaces
- 10/100/1000bT Ethernet

Storage
- MicroSD card connector
- eMMC 4GB (exp. To 64GB)
- 2 x SATA2 Connectors

Multimedia
- HDMI for HD1080p
- LVDS
- MIPI-CSI (20MP camera)
- 5.1 Audio In/Out

Q7 Connector
- 2x USB2.0, 1x USB OTG
- Serial console on-board connectors
- I2C, SPI, USB, SATA, LVDS

Power, Mechanical & Environmental
- **Power:** +5V Input Socket (5A typ.)
- **Dimensions:** 70mm x 70mm (Qseven) 17cm x 17cm (Mini-ITx Carrier)
- **Operating Temp:** 0 to 70 C

Software
- Android 4.1 Jellybean
- Ubuntu Linux
myDragonBoard.org, Snapdragon Community

Dev Tools, Projects, Forums, Blogs, ...

Projects

To submit your project ...

You MUST be logged in to the Community and then … click here!

TransferJet in ADP8060A board

If you want to solve M2M wireless transfer challenge in the most efficient way, TransferJet™ is the answer. TransferJet™ is a close-proximity wireless transfer technology that features simple operation, secured communication, and ultra high-speed transfer of data. TransferJet™ also supports video streaming without buffering. READ MORE …

Vehicle-to-Vehicle Communication System

The central theme of this project is based on the ubiquity of GPS (Global Positioning System) for navigation. The most important difference between GPS and any other radio communication system is that in GPS there exists only a unidirectional link (Satellite -> around receiver). What if a GPS receiver can also broadcast its position data to enable exchange of positions among GPS receivers?...
Device Driver Development on Snapdragon™ Processor Based DragonBoard™ Development Platforms – Best Practices
Using Toshiba Peripheral Devices to Enable Embedded Devices with SnapDragon™

Pico Projectors
- HDMI to CSI Converter
- SnapDragon™
- Projection Chip

Virtual Reality Glasses
- HDMI to CSI Converter
- SnapDragon™
- CSI I2S

Portable Video Recorder
- DSI to LVDS Converter
- SnapDragon™
- LVDS Panel
Toshiba Device driver development on Snapdragon™ Processor Based DragonBoard™ Development Platforms

1. Mobile Peripheral Devices (MPD) Bridge Chips on DragonBoard™ 8060A Development Kit
 a) MIPI®-DSI to LVDS Converter Low Power (D2LLP) - (TC358775XBG)
 b) HDMI to MIPI®-CSI Converter (H2C) - (TC358743XBG)

2. TransferJet® Technology Compliant IC (TC35420XLG) on DragonBoard™ 8060A Development Platform

3. Audio Codec IC (TC94B24WBG) on DragonBoard™ 8060 Development Platform
Device Driver Development – Best Practices

1. Hardware Feasibility
2. Determine DragonBoard™ Platform/Linux Release to use
 a) Support for required hardware interfaces
3. Use Existing Linux Device driver frameworks, models and API’s
4. Determine device driver type - Built-in kernel driver or Module driver
5. Follow Linux Coding guidelines
6. Robust device driver with good error handling
7. Device driver interface with user space programs
 a) Special functions
 b) Debugging
8. Portability considerations
9. Debugging considerations
 Dynamic Debugging, file system interfaces, user programs
MPD Demo System 1: H2C + D2L-LP

This demo shows HDMI data converted into MIPI CSI by the TC358743 bridge IC enabling Host Processors to have HDMI RX capability. The video data is then displayed to an LVDS panel. The TC358775 bridge IC enables the Host to have LVDS TX capability.

Mobile Host Processors have MIPI® interfaces for displays and cameras, the Toshiba bridge ICs add interfaces that enable new features, functions and capabilities.
D2LLP Features

- Receives video on the DSI receiver interface and transmits the video on the LVDS output interface.

- **DSI Receiver**
 - Supports up to 4 data lanes with max bit rate of 1Gbps/lane
 - Video input data formats: RGB565, RGB666 and RGB888
 - Up to WUXGA resolutions (1920x1200 24-bit pixels) to dual-link LVDS display panel

- **LVDS FPD Link Transmitter**
 - Supports single-link or dual-link
 - Maximum pixel clock speed of 135 MHz for single-link or 270 MHz for dual-link
 - Supports display up to 1600x1200 24-bit/pixel resolution for single-link, or up to WUXGA (24 bit/pixel) resolutions for dual-link
D2LLP Driver - Overview

1. D2LLP chips could be programmed using either I2C or DSI
 a) Programming of D2LLP chip done using DSI in this driver

2. Char driver interface provided to user layer to read and write D2LLP registers

3. Reused existing DSI subsystem interface code on Snapdragon™ processor based platform

4. Initialization of D2LLP chip

5. Panel Timing configuration using the registers in D2LLP
 a) HBP, HFP, HPW, HACT, VBP, VFP, VACT, VPW

6. Debugging using following D2LLP registers
 a) Interrupt Status
 b) Debug Registers
 c) System Status
H2C Features

- Converts HDMI Video Data to MIPI-CSI-2 Video Data
- HDMI-RX Interface
 - HDMI 1.4 - Video Formats Support (Up to 1080P@60fps)
 - RGB, YCbCr444: 24-bpp @60fps, YCbCr422 24-bpp @60fps
- Supports 3D, HDCP, DDC, EDID,
- Maximum HDMI clock speed: 165MHz
- Supports up to 4 CSI2 data lanes at 1 Gbps per data lane
- Video, Audio and InfoFrame data can be transmitted over MIPI CSI-2
- I2C Slave interface used for configuring registers
- Support I2C speeds of 100Khz, 400Khz and 2 MHz
H2C Driver - Overview

1. H2C driver is basically a MIPI-CSI input capture driver where MIPI-CSI input is received from H2C chip in YUV format
2. Start with a working sensor source code as a template
3. Use existing framework functions where possible
4. Override other functions which need specific implementation for H2C
5. H2C registers can be read/written using the I2C interface.
6. H2C registers can be accessed as 8 bit, 16 bit or 32 bit registers. User programs as well as /sys/* file system interface
7. Program H2C registers to
 a) Output the appropriate format and frame rate on CSI
 b) Do RGB to YUV conversion if required
 c) Program EDID
8. Program settle time appropriately as per MIPI® specification
9. Dynamic Debugging
H2C Driver Implementation

- Major interface with sensor - V4L2

```c
struct msm_sensor_ctrl_t h2c_s_ctrl = {
    .msm_sensor_reg = &h2c_regs,
    .sensor_i2c_client = &h2c_i2c_client,
    .sensor_i2c_addr = 0x0f << 1,
    .sensor_output_reg_addr = &h2c_reg_addr,
    .sensor_id_info = &h2c_id_info,
    .cam_mode = MSM_SENSOR_MODE_INVALID,
    .csic_params = &h2c_csic_params_array[0],
    .csi_params = &h2c_csi_params_array[0],
    .msm_sensor_mutex = &h2c_mut,
    .sensor_i2c_driver = &h2c_i2c_driver,
    .sensor_v4l2_subdev_info = h2c_subdev_info,
    .sensor_v4l2_subdev_info_size = ARRAY_SIZE(h2c_subdev_info),
    .sensor_v4l2_subdev_ops = &h2c_subdev_ops,
    .func_tbl = &h2c_func_tbl,
};
```
H2C Driver Implementation

- **sensor_output_reg_addr**
  ```c
  struct msm_sensor_output_reg_addr_t h2c_reg_addr = {
    .x_output = 0x0060,
    .y_output = 0x0064,
    .line_length_pclk = 0x0068,
    .frame_length_lines = 0x006c
  }
  ```

- **csic_params**
  ```c
  struct msm_camera_csi_params h2c_csic_params = {
    .data_format = CSI_8BIT,
    .lane_cnt    = 2,
    .lane_assign = 0xe4,
    .dpcm_scheme = 0,
    .settle_cnt  = H2C_SETTLE_CNT,
  }
  ```
H2C Driver Implementation

```c
struct msm_camera_csid_vc_cfg h2c_cid_cfg[] = {
    {0, CSI_YUV422_8, CSI_DECODE_8BIT},
};

struct msm_camera_csi2_params h2c_csi_params = {
    .csid_params = {
        .lane_assign = 0xe4,
        .lane_cnt = 2,
        .lut_params = {
            .num_cid = ARRAY_SIZE(h2c_cid_cfg),
            .vc_cfg = h2c_cid_cfg,
        },
    },
    .csiphy_params = {
        .lane_cnt = 2,
        .settle_cnt = H2C_SETTLE_CNT,
    },
};
```
H2C Driver Implementation

- **Sensor_i2c_driver**
  ```c
  struct i2c_driver h2c_i2c_driver = {
      .id_table = h2c_i2c_id,
      .probe = msm_sensor_i2c_probe,
      .driver = {
          .name = SENSOR_NAME,
      },
  };
  ```

- **sensor_v4l2_subdev_info**
  ```c
  struct v4l2_subdev_info h2c_subdev_info[] = {
      {
          .code   = V4L2_MBUS_FMT_YUYV8_2X8,
          .colorspace = V4L2_COLORSPACE_JPEG,
          .fmt    = 1,
          .order  = 0,
      },
  };
  ```
H2C Driver Implementation

- sensor_v4l2_subdev_ops
 static struct v4l2_subdev_core_ops h2c_subdev_core_ops = {
 .ioctl = msm_sensor_subdev_ioctl,
 .s_power = msm_sensor_power
 };
 static struct v4l2_subdev_video_ops h2c_subdev_video_ops = {
 .enum_mbus_fmt = msm_sensor_v4l2_enum_fmt
 };
 static struct v4l2_subdev_ops h2c_subdev_ops = {
 .core = &h2c_subdev_core_ops,
 .video = &h2c_subdev_video_ops
 };

- func_tbl
 static struct msm_sensor_fn_t h2c_func_tbl = {
 .sensor_start_stream = h2c_start_stream,
 .sensor_stop_stream = h2c_stop_stream,
 .sensor_csi_setting = h2c_csi2_setting,
 .sensor_set_sensor_mode = msm_sensor_set_sensor_mode,
 .sensor_mode_init = msm_sensor_mode_init,
 .sensor_get_output_info = msm_sensor_get_output_info,
 .sensor_config = msm_sensor_config,
 .sensor_power_up = h2c_power_up,
 .sensor_power_down = h2c_power_down,
 .sensor_adjust_frame_lines = msm_sensor_adjust_frame_lines1,
 .sensor_get_csi_params = msm_sensor_get_csi_params
 };

A Simple, High Speed, M2M Wireless Transfer Technology

- **Simple** - Just Touch
- **High Speed** - 560*/375** Mbps
- **Low Power** - Comparable to BT
- **Toshiba Offers Total Solution**
 - IC, Module, Accessories (MicroSD Card and USB Adaptor)

* Raw Speed
** Effective Speed
DragonBoard™ Platform TransferJet® Technology Demo

TransferJet® is a Machine-to-Machine, Simple, High Speed Wireless Technology
• Simple – Just a Touch
• High Speed – 560Mbps Raw Speed / 375Mbps Effective Speed
• Low Power – Comparable to Bluetooth
• Secured Communication

The demo shows that the APQ8060A DragonBoard™ with TransferJet Transceiver IC integrated can transfer file to or receive file from a TransferJet ready Tablet in a simple, high speed, and secured fashion.
TransferJet® – Software Stack

- Upper Application
 - SCSI Protocol
 - OBEX Protocol
 - Application Controller

- CMN
- PCL Adapter Interface
 - SCSI
 - OBEX
- APC/PCLS

- PCLC

- Application

- DRIVER
 - CNL Kernel module Drivers
 - SDIO

- PHYSICAL LAYER
 - PHY
Audio CODEC

Mobile Audio Solution with Superb Noise and Echo Cancellations

- Excellent Noise Cancellation
 Unique algorithm with statistical noise estimation and min mean square error approach

- Excellent Echo Cancellation
 Unique algorithm with time-domain echo cancelling adaptive filter and frequency-domain echo suppression

- NC/EC Can be Achieved by 1 Mic

TC94B24WBG

I2C Control
G-class stereo headphone
4-ch Digital microphone interface
Ear speaker amplifier
2-ch ADC for analog microphone
I2S I/F (4input, 4output)

DSP
CEVA-TeakLite-III™

Noise Cancellation Algorithm
Echo Cancellation Algorithm

Handfree Call with Noise

After Noise Cancellation

Voice

Noise

Toshiba
Leading Innovation
Audio Codec (TC94B24WBG) – Block Diagram
Audio Codec Driver

Kernel
 └── ALSA Core
 ├── ALSA SoC Core
 └── Platform Driver

Machine Driver
 └── Audio Codec Driver

I2C Driver Subsystem

Hardware
 └── DMA
 └── LPSS
 └── I2C Interface

I2S

I2C

Toshiba Minerva Board
All trademarks or registered trademarks are the property of their respective owners in the United States and other countries.
Thank you

Follow us on:

For more information, visit us at:
www.qualcomm.com & www.qualcomm.com/blog

© 2013 Qualcomm Technologies, Inc. All rights reserved. Qualcomm, Snapdragon, and Gobi are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Trademarks of Qualcomm Incorporated are used with permission. Other products and brand names may be trademarks or registered trademarks of their respective owners.

QUALCOMM Technologies, Incorporated, 5775 Morehouse Drive, San Diego, CA 92121-1714