
AddressSanitizer/ThreadSanitizer for
Linux Kernel and userspace.

Konstantin Serebryany, Dmitry Vyukov

Linux Collaboration Summit
15 April 2013

● AddressSanitizer, a memory error detector (userspace)

● ThreadSanitizer, a data race detector (userspace)

● Thoughts on AddressSanitizer for Linux Kernel

● Our requests to the Kernel

Agenda

AddressSanitizer (ASan)
a memory error detector

● Buffer overflow
○ Heap
○ Stack
○ Globals

● Use-after-free (dangling pointer)
● Double free
● Invalid free
● Overapping memcpy parameters
● ...

Memory Bugs in C++

AddressSanitizer overview

● Compile-time instrumentation module
○ Platform independent

● Run-time library
○ Supports Linux, OS X, Android, Windows

● Released in May 2011

● Part of LLVM since November 2011

● Part of GCC since March 2013

int global_array[100] = {-1};
int main(int argc, char **argv) {
 return global_array[argc + 100]; // BOOM
}
% clang++ -O1 -fsanitize=address a.cc ; ./a.out

==10538== ERROR: AddressSanitizer global-buffer-overflow
READ of size 4 at 0x000000415354 thread T0
 #0 0x402481 in main a.cc:3
 #1 0x7f0a1c295c4d in __libc_start_main ??:0
 #2 0x402379 in _start ??:0
0x000000415354 is located 4 bytes to the right of global
variable 'global_array' (0x4151c0) of size 400

ASan report example: global-buffer-overflow

int main(int argc, char **argv) {
 int stack_array[100];
 stack_array[1] = 0;
 return stack_array[argc + 100]; // BOOM
}
% clang++ -O1 -fsanitize=address a.cc; ./a.out

==10589== ERROR: AddressSanitizer stack-buffer-overflow
READ of size 4 at 0x7f5620d981b4 thread T0
 #0 0x4024e8 in main a.cc:4
Address 0x7f5620d981b4 is located at offset 436 in frame
<main> of T0's stack:

 This frame has 1 object(s):
 [32, 432) 'stack_array'

ASan report example: stack-buffer-overflow

int main(int argc, char **argv) {
 int *array = new int[100];
 int res = array[argc + 100]; // BOOM
 delete [] array;
 return res;
}
% clang++ -O1 -fsanitize=address a.cc; ./a.out

==10565== ERROR: AddressSanitizer heap-buffer-overflow
READ of size 4 at 0x7fe4b0c76214 thread T0
 #0 0x40246f in main a.cc:3
0x7fe4b0c76214 is located 4 bytes to the right of 400-
byte region [0x7fe..., 0x7fe...)

allocated by thread T0 here:
 #0 0x402c36 in operator new[](unsigned long)
 #1 0x402422 in main a.cc:2

ASan report example: heap-buffer-overflow

ASan report example: use-after-free
int main(int argc, char **argv) {
 int *array = new int[100];
 delete [] array;
 return array[argc]; // BOOM
}
% clang++ -O1 -fsanitize=address a.cc && ./a.out

==30226== ERROR: AddressSanitizer heap-use-after-free
READ of size 4 at 0x7faa07fce084 thread T0
 #0 0x40433c in main a.cc:4
0x7faa07fce084 is located 4 bytes inside of 400-byte
region
freed by thread T0 here:
 #0 0x4058fd in operator delete[](void*) _asan_rtl_
 #1 0x404303 in main a.cc:3
previously allocated by thread T0 here:
 #0 0x405579 in operator new[](unsigned long) _asan_rtl_
 #1 0x4042f3 in main a.cc:2

Any aligned 8 bytes may have 9 states:
N good bytes and 8 - N bad (0<=N<=8)

0

7

6

5

4

3

2

1

-1

Addressable

Unaddressable

Shadow

Good byte

Bad byte

Shadow value

ASan shadow byte

Mapping: Shadow = (Addr>>3) + Offset

0xffffffff
0x40000000

0x3fffffff
0x28000000

0x27ffffff
0x24000000

0x23ffffff
0x20000000

0x1fffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space (32-bit with)

Mapping: Shadow = (Addr>>3) + 0

0xffffffff
0x20000000

0x1fffffff
0x04000000

0x03ffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space (32-bit with -pie)

*a = ...

Instrumentation: 8 byte access

char *shadow = (a>>3)+Offset;
if (*shadow)

 ReportError(a);
*a = ...

*a = ...

Instrumentation: N byte access (N=1, 2, 4)

char *shadow = (a>>3)+Offset;
if (*shadow &&
 *shadow <= ((a&7)+N-1))
 ReportError(a);
*a = ...

Instrumentation example (x86_64)

mov %rdi,%rax # address is in %rdi
shr $0x3,%rax # shift by 3
cmpb $0x0,0x7fff8000(%rax) # shadow ? 0
je 1f <foo+0x1f>
callq __asan_report_store8 # Report error
movq $0x1234,(%rdi) # original store

void foo() {

 char a[328];

 <------------- CODE ------------->

}

Instrumenting stack

void foo() {
 char rz1[32]; // 32-byte aligned
 char a[328];
 char rz2[24];
 char rz3[32];
 int *shadow = (&rz1 >> 3) + kOffset;
 shadow[0] = 0xffffffff; // poison rz1

 shadow[11] = 0xffffff00; // poison rz2
 shadow[12] = 0xffffffff; // poison rz3
 <------------- CODE ------------->
 shadow[0] = shadow[11] = shadow[12] = 0;
}

Instrumenting stack

Instrumenting globals

int a;

struct {
 int original;
 char redzone[60];
} a; // 32-aligned

Run-time library

● Initializes shadow memory at startup
● Provides full malloc replacement

○ Insert poisoned redzones around allocated memory
○ Quarantine for free-ed memory
○ Collect stack traces for every malloc/free

● Provides interceptors for functions like memset
● Prints error messages

Performance

● SPEC 2006: average slowdown is < 2x
○ "clang -O2" vs "clang -O2 -fsanitize=address -fno-

omit-frame-pointer"

● Almost no slowdown for GUI programs (e.g. Chrome)
○ They don't consume all of CPU anyway

● 1.5x - 3x slowdown for server side apps with -O2

https://code.google.com/p/address-sanitizer/wiki/PerformanceNumbers

Memory overhead
● Heap redzones

○ 16-2048 bytes per allocation, typically 20% of size
● Stack redzones: 32-63 bytes per addr-taken local var
● Global redzones: 32+ bytes per global
● Fixed size Quarantine (256M)
● (Heap + Globals + Stack + Quarantine) / 8 (shadow)

● Typical overall memory overhead is 2x-3x

● Stack size increase up to 3x
● mmap MAP_NORESERVE 1/8-th of all address space

○ 20T on 64-bit
○ 0.5G on 32-bit

Trophies
● Chromium (including WebKit); in first 10 months

○ heap-use-after-free: 201
○ heap-buffer-overflow: 73
○ global-buffer-overflow: 8
○ stack-buffer-overflow: 7

● Mozilla
● FreeType, FFmepeg, libjpeg-turbo, Perl, Vim, LLVM,

GCC, WebRTC, MySQL, ...
● Google server-side apps

Future work

● Avoid redundant checks (static analysis)

● Instrument or recompile libraries

● Instrument inline assembler

● Adapt to use in a kernel
○ discussed later in this talk!

C++ is suddenly
a much safer language

MemorySanitizer (MSan)
finds uses of uninitialized memory

(not in this talk)

ThreadSanitizer (TSan)
a data race detector

TSan report example: data race

void Thread1() { Global = 42; }
int main() {
 pthread_create(&t, 0, Thread1, 0);
 Global = 43;
 ...
% clang -fsanitize=thread -g a.c -fPIE -pie && ./a.out

WARNING: ThreadSanitizer: data race (pid=20373)
 Write of size 4 at 0x7f... by thread 1:
 #0 Thread1 a.c:1
 Previous write of size 4 at 0x7f... by main thread:
 #0 main a.c:4
 Thread 1 (tid=20374, running) created at:
 #0 pthread_create
 #1 main a.c:3

ThreadSanitizer v1

● Used since 2009
● Based on Valgrind
● Slow (20x-400x slowdown)

○ Still, found thousands races
○ Also, faster than others

● Other race detectors for C/C++:
○ Helgrind (Valgrind)
○ Intel Parallel Inspector (PIN)

ThreadSanitizer v2 overview

● Simple compile-time instrumentation
● Redesigned run-time library

○ Fully parallel
○ No expensive atomics/locks on fast path
○ Scales to huge apps
○ Predictable memory footprint
○ Informative reports

Execution Slowdown

Application Tsan1 Tsan2 Tsan1/Tsan2

RPC benchmark 428 2.8 155

Server app test 26 1.8 15

String util test 40 3.4 12

Compiler instrumentation

void foo(int *p) {
 *p = 42;
}

void foo(int *p) {
 __tsan_func_entry(__builtin_return_address(0));
 __tsan_write4(p);
 *p = 42;
 __tsan_func_exit()
}

Direct mapping (64-bit Linux)

Application
0x7fffffffffff
0x7f0000000000

Protected
0x7effffffffff
0x200000000000

Shadow
0x1fffffffffff
0x180000000000

Protected
0x17ffffffffff
0x000000000000

Shadow = N * (Addr & Mask); // Requires -pie

Shadow cell
An 8-byte shadow cell represents one memory
access:

○ ~16 bits: TID (thread ID)
○ ~42 bits: Epoch (scalar clock)
○ 5 bits: position/size in 8-byte word
○ 1 bit: IsWrite

Completely embedded (no more dereferences)

TID

Epo

Pos

IsW

N shadow cells per 8 application bytes
TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

Example: first access
T1

E1

0:2

W

Write in thread T1

Example: second access
T1

E1

0:2

W

T2

E2

4:8

R

Read in thread T2

Example: third access
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Read in thread T3

Example: race?
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Race if E1 not
"happens-before" E3

Fast happens-before

● Constant-time operation
○ Get TID and Epoch from the shadow cell
○ 1 load from TLS
○ 1 compare

● Similar to FastTrack (PLDI'09)

Shadow word eviction

● When all shadow words are filled, one
random is replaced

Informative reports

● Need to report two stack traces:
○ current (easy)
○ previous (hard)

Previous Stack Traces

● Per-thread cyclic buffer of events
○ 64 bits per event (type + pc)
○ Events: memory access, function

entry/exit, mutex lock/unlock
○ Information will be lost after some time

● Replay the event buffer on report

Function interceptors

● 100+ interceptors
○ malloc, free, ...
○ pthread_mutex_lock, ...
○ strlen, memcmp, ...
○ read, write, ...

Headaches
● Timeouts
● Memory consumption (OOMs)
● Non-instrumented libraries
● "Benign" data races

AddressSanitizer for Linux Kernel

Disclaimer:
we are not kernel hackers

CONFIG_DEBUG_SLAB
Enables red-zoning and poisoning.
Can detect some out-of-bounds (OOB) accesses and use-
after-free (UAF).

Does not detect OOB reads.
Best-effort UAF detection.

CONFIG_KMEMCHECK
CONFIG_KMEMCHECK is a heavy-handed uninitialized
memory access checker which causes page-fault on every
memory access.

Slow.

CONFIG_DEBUG_PAGEALLOC
Unmaps freed pages from address space. Can detect
some UAF accesses.

Detects UAF only when the whole page is unused.

CONFIG_ASAN
Fast and comprehensive solution for UAF and OOB.
● Based on compiler instrumentation (fast)
● OOB for both writes and reads
● Strong UAF detection
● Prompt detection of bad memory accesses
● Informative reports

Shadow Memory

"Physical"
memory

User Kernel

SHADOW

Virtual Address space:

"Physical" memory:

Starts at fixed offset (say, 64M)
Size = 1/8 of physical memory

Shadow Mapping
char *get_shadow(void *addr) {
 // Is physical memory?
 if (addr < __va(0) ||
 addr > __va(max_pfn << PAGE_SHIFT))
 return NULL;

 return addr / 8 + ASAN_SHADOW_START;
}

Virtual Memory?
Unclear what is the best way to handle.

Want the mapping to be (w/o "if" for phys
mem):
 return addr / 8 + ASAN_SHADOW_START;

Slab Allocator
● Add redzones
● Poison/unpoison
● Delay reuse (quarantine)

API
asan_poison(addr, size);
asan_unpoison(addr, size);
asan_check(addr, size);

Instrument:
● memset/memcmp/...
● other allocators
● ...

Problems that we know about

● Fast shadow mapping that supports
physical/virtual/user memory

● Bootstrap process (instrumentation can't be
turned off)

● Text size increase
● Interrupts
● Modules
● ?

ThreadSanitizer for Kernel
ASan needs to intercept some memory
management + some memory accesses.
TSan needs to intercept all synchronization +
does not tolerate "benign" races.

int i = atomic_load(&g_index, acquire);

vs

int i = g_index.
rmb();

Our requests to
the Kernel and Linux distributions

Ideal Address Space Layout for
ASan/TSan/MSan

Everything resides in upper 1/8-th of AS
0x700000000000-0x7fffffffffff

Today this works on Linux when:
● x86_64
● -pie
● ASLR on
● Limited stack

Ideally: always

Bill Gates: "16Tb ought to be enough for anybody" (~1981)

Address space with ASLR (0x55555...)
int main() { printf("&main: %p\n", &main); }
% setarch x86_64 -R ./a.out

On Ubuntu 12.04
&main: 0x55555555472c # Breaks TSan mapping

On Ubuntu 10.04
&main: 0x7ffff7ffe77c # 0x700000000000+ is ok

Guilty commit : 2011-11-02 by Jiri Kosina
Based on original patch by H.J. Lu and Josh Boyer
- load_bias = 0;
+ load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a3defbe5c337dbc6da911f8cc49ae3cc3b49b453

Unlimited stack is too greedy

ulimit -s 8192 # default
00400000-00401000 /tmp/a.out ...
7fed6011a000-7fed6011c000 ld-2.15.so
7fff13a6b000-7fff13a8c000 [stack] ...

ulimit -s unlimited
00400000-00401000 /tmp/a.out ...
2b86b32e6000-2b86b32e8000 ld-2.15.so
7fff13a6b000-7fff13a8c000 [stack] ...

Can you really have 84Tb of stack??

Volatile ranges for shadow memory
In ASan/MSan/TSan's: shadow value '0' means 'good'.

If the process is short of RAM, LRU shadow pages may be
confiscated.
Empty pages will be returned on next access.

Was independently proposed as fadvise(FADV_VOLATILE)

How to limit the real memory?
● ulimit -v is useless

○ ASan uses 20Tb of AS
○ TSan uses 97Tb of AS
○ MSan uses 72Tb of AS

General robustness with
MAP_NORESERVE

● Conflicts with mlockall(MCL_CURRENT)
○ kills the machine
○ fixed on Feb 2013

● OOMs often kill the machine

http://thread.gmane.org/gmane.linux.kernel.mm/94493
http://thread.gmane.org/gmane.linux.kernel.mm/94493

Shipping instrumented libraries
with Linux distros

● ASan/TSan/MSan use compiler instrumentation
○ Finding buggy accesses in popular libc functions using

interceptors
○ Not finding buggy accesses in other standard libs
○ TSan: may cause false positives if libs have

synchronization using raw atomics

● Solution: ship instrumented libraries with Linux distros

Summary
● AddressSanitizer

○ Finds buffer overflows and use-after-free
○ "Must have" for all C/C++ developers

● ThreadSanitizer
○ Finds data races
○ "Must have" for all C/C++/Go developers w/ threads

● AddressSanitizer is possible for the Kernel
○ In the investigation stage, help is welcome

● Support from Kernel and Linux distros may help Sanitizers
get better

Q&A

http://code.google.com/p/address-sanitizer/

http://code.google.com/p/thread-sanitizer/

http://code.google.com/p/address-sanitizer/
http://code.google.com/p/address-sanitizer/
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/thread-sanitizer/

Backup

AddressSanitizer vs Valgrind (Memcheck)

Valgrind AddressSanitizer

Heap out-of-bounds YES YES

Stack out-of-bounds NO YES

Global out-of-bounds NO YES

Use-after-free YES YES

Use-after-return NO Sometimes/YES

Uninitialized reads YES NO

Overhead 10x-300x 1.5x-3x

Platforms Linux, Mac Same as LLVM *

