
PA12013-04-121

Advanced Size Optimization
of the Linux Kernel

Tim Bird
Sony Mobile Communications

© Sony Mobile Communications

PA12013-04-122

Who am I?

• Tim Bird

• Researcher and open source guy at Sony

• Recently switched to Sony Mobile Communications

• Researching system size for many years

• Background in extremely small systems

• First programmed a TRS-80, 8k RAM

• NetWare Lite – file and print server in 50K (1991)

PA12013-04-123

Outline

• The “size” problem

• Characterization of bloat and strategy for dealing with it

• Automatic reductions

• Constraint-based optimizations

• Additional kernel size research

• Resources for small-system work

PA12013-04-124

The Size problem

• System gains more features and bugfixes over time

• Abstraction, layering, generalization all add to software

• Result is system with lots of software that is never executed

• Bloat in open source

• Generalization - Linux kernel supports everything from tiny
sensors to supercomputers

• Lots of features are configurable, but many are not

PA12013-04-125

Dealing with bloat

• Embedded devices have specialized use cases

• Well, many do (TVs, cameras, set-tops, routers, etc.)

• Most Android-based products are open platforms

• Can run arbitrary software

• At a high level: Need to re-specialize the software for
specific use cases unique to your product

• But, want to continue to leverage open source community and
software over time

PA12013-04-126

Bloat trajectory

• Software gets more generalized over time

• Kernel growing by 10% per year for last 10 years

• Can't use strategy of manual tuning (i.e. config options)

• 2.6.12 had 4,700 kernel config options, and 3.9 has about 13,000
options

• An individual developer can't be an expert in so many different options

• Manual configuration doesn't scale

• Need to rely on automated methods of reduction

PA12013-04-127

Bloat in kernel vs. user space

• In desktop or server, for user-space programs virtual
memory makes bloat issue less important

• Pages are loaded on demand – only the working set of the
program is in memory

• For kernel, pages are always loaded

• Embedded devices often do not have swap

PA12013-04-128

Automatic Reduction (Intro)

• In order to reduce the software, it is necessary to
distinguish used code from unused code

• Without resorting to manual configuration

• This research includes a few different techniques for
finding and eliminating unused code in the Linux kernel

PA12013-04-129

But first... The story of my own 8 bytes of bloat

• Not my only bloat addition, but this one really bugged me

• I added a conditional check in kdb

• Found a bug in kdb, when a particular option was used in kdb startup file

• I added a patch to fix problem, but now every kernel has this fix

• Only 8 bytes, but this is how the kernel gets bigger over time

• Very few people use kdb startup files, or that particular option

• My own contribution of code and overhead, unneeded by almost everyone!

• More correct solution would be to detect condition at compile-time,
and eliminate the runtime test, but this was impractical

PA12013-04-1210

Generalizing the Problem of Bloat

• System doesn't know invariant system states (e.g.
limitations on inputs to functions)

• It's easy to omit a driver for unused or not-present hardware

• It's difficult to omit code paths or error handling for inputs that
will never occur due to fixed use cases

• Can we identify fixed inputs to kernel functions, and use
compiler to optimize the code?

PA12013-04-1211

Example of invariant state in embedded – uid

• There are uid references throughout the kernel

• References in storage, file system, task structures, accounting

• uid is ultimately set by setuid(), by the 'login' program

• Login does a lookup and validates user in /etc/password

• What if /etc/passwd only has 'root' and no others?

• Setuid() can only be called with a value of 0

• Can I encode this constraint on the system?

PA12013-04-1212

Types of constraints

• Syscalls never called by any program

• Kernel command-line arguments never used

• Parameters that are never used, or limits on possible
parameter values (setuid(uid))

• /proc or /sys values never referenced

PA12013-04-1213

Auto-reduce project

• Find automated ways to reduce the kernel

• Link-time optimization

• System call elimination

• Kernel command-line argument elimination

• Kernel constraint system

• Additional research

• Link-time re-writing

• Cold-code compression

Link-Time Optimization

PA12013-04-1215

Link Time Optimization

• LTO is a new GNU toolchain feature (gcc 4.7+)

• Save extra meta-data (gimple format) at compile-time

• Use meta-data at link time to do whole-program optimization

• Obsoletes gcc -ffunction-sections

• Has slow link step, but much better code optimization

• See http://lwn.net/Articles/512548

PA12013-04-1216

Link-Time Optimization

• Andi Kleen created patches to support this compiler
option for the Linux kernel

• Patches are for Intel architecture

• See http://lwn.net/Articles/512548/

• Code available at: git://github.com/andikleen/linux-misc

• I did a few patches for ARM architecture

• Requires gcc 4.7 and linux-binutils 2.22.51.0.1 or later

PA12013-04-1217

LTO Benefits

• Opens up a whole new class of optimizations

• Performance improvements: (very preliminary results)
• (x86) Hackbench – 5%, network benchmark – up to 18%

• Size improvement:

• (x86) No size improvement reported by Andi

• (ARM) 6% kernel size reduction (384K in my testing)

PA12013-04-1218

Link-Time Optimization Results

• I demoed first LTO kernel running on ARM at ELC 2013
(February 2013)

• World's first, that I know of!!

• TI panda board, mem=24M

• 384K smaller kernel image Kernel non-LTO LTO

Compile time 1m 58s 3m 22s

Image size 5.85M 5.46M

Meminfo Total 17804K 18188K

PA12013-04-1219

LTO Problems

• Longer build times

• Link takes about 1.5 minutes, for small kernel config

• More memory required for builds

• 9G for x86 allyesconfig

• Andi found a few subtle bugs from optimizations

• E.g. Duplicate code elimination caused a pointer comparison failure

• These should be eliminated with newer toolchain versions

PA12013-04-1220

Possible Future Benefits of LTO

• Can automatically drop unused code and data

• Maybe reduce ifdefs in kernel

• Partial inlining – e.g. only inline some code, like tests at
beginning of functions

• Optimize arguments to global functions

• Drop unnecessary args, optimize inputs/outputs, etc.

• Detect function side effects, and optimize caller

• e.g. Keep values in registers over call

PA12013-04-1221

Possible Future Benefits of LTO (cont.)

• Detect read-only variables and optimize

• Replace indirect calls with direct calls and optimize

• Do constant propagation, and function call specialization
based on that

• If a function is called commonly with a constant, make a special
version of the function optimized for that

• e.g. kmalloc_GFP_KERNEL()

System Call Elimination

PA12013-04-1223

System Call Elimination

• In theory, it's pretty simple:

• Determine which syscalls are used by all user-space programs

• Remove unused system calls from the kernel

• In practice, there are a few details to take care of...

PA12013-04-1224

Finding used/unused system calls

• Initial test using a single binary

• Statically linked busybox

• Scan object files (assembly) for specific syscall code
sequences

• Program: find-syscalls.py

• Produces a list of used and unused syscalls for an object file

• Also, shows warnings for weird syscall code sequences

PA12013-04-1225

Problem with dynamic linked libraries

• Libc includes calls to all syscalls

• When libc is statically linked, functions are automatically eliminated if not referenced

• That doesn't happen when libc is dynamically linked

• Need a mechanism to scan all binaries in system, and eliminate
unreferenced functions from dynamic libs

• Libopt – MontaVista program to remove unreferenced functions in libraries

• Note: must be re-run if new binaries are introduced to system

• In practice, new binaries very rarely add new syscalls

PA12013-04-1226

Eliminating syscalls in kernel

• Added mechanisms in kernel to remove unused syscalls

• Added UNUSED() macro, which converts syscall reference from sys_foo() to
sys_ni_sycall() - used in arch/arm/kernel/calls.S

• Created unused_syscall.h file (initially empty)

• Created syscall_usage.h, with per-syscall asmlinkage definitions

• Created mark-unused.py for saving syscall usage data in source

• Adds macro UNUSED() around any unused syscalls in calls.S

• Adds is_unused_foo definitions in unused_syscall.h file

PA12013-04-1227

Asmlinkage details

• Syscalls are declared using SYSCALL_DEFINE macros
in include/linux/syscall.h

• By default, asmlinkage macro is defined with __visible,
which becomes __attribute__((externally_visible))

• This exists specifically to keep syscalls from disappearing
during linking – but.. we want unused ones to disappear

• My mechanism declares asmlinkage without the
__visible attribute, so that LTO can eliminate the syscall

PA12013-04-1228

System Call Elimination Results

• Total number of syscalls: 395

• Syscalls marked unused: 211

• Optimized kernel was hand-configured to remove
unneeded features (49 CONFIG option changes)

Kernel Syscalls removed Size reduction

unoptimized 161 94,980

optimized 120 47,860

PA12013-04-1229

System Call Elimination Notes

• Finding syscalls in ARM is pretty reliable

• Only 2 assembly sequences where manual evaluation was
needed to determine call

• Finding syscalls may be hard on other architectures

• Affected by method of syscall invocation, register usage, etc.

• Could compile with no optimization just for syscall determination
pass

Kernel Command-line Argument
Elimination

PA12013-04-1231

Kernel Command-line Argument Elimination

• Kernel command-line args documented in
Documentation/kernel-parameters.txt

• Defined with __setup() and early_param() macros from
include/linux/init.h

• Approximately 480 __setup() routines in kernel source

• About 200 __setup_* in System.map on ARM kernel build (98
__setup_str_*)

• About 230 early_param routines in kernel source

PA12013-04-1232

Argument Elimination Mechanism

• Define new macros __setup_used() and
early_param_used()

• If CONFIG_PARAM_USED_ONLY, then make __setup() and
early_param() definitions empty

• Create a list of used params (in constraint config)

• Change 'used' routines to use macros __setup_used()
and early_param_used()

PA12013-04-1233

Command-line Elimination Results

• Unoptimized kernel: 19K reduction

• Optimized kernel: 6K reduction

 base test bytes changed percent
 text: 7680084 7663472 -16612 0%
 data: 362868 360516 -2352 0%
 bss: 745312 745184 -128 0%
total: 8788264 8769172 -19092 0%

 base test bytes changed percent
 text: 1653672 1648920 -4752 0%
 data: 131636 130244 -1392 -1%
 bss: 50688 50528 -160 0%
total: 1835996 1829692 -6304 0%

Kernel Constraint System

PA12013-04-1235

Kernel Constraint System

• Goal is to find constraints that can be applied system-
wide (both kernel and user-space), to optimize the
software

PA12013-04-1236

Background: Lessons from Linux-tiny

• Linux-tiny added lots of CONFIG options

• Was hard to get accepted upstream

• After a few years of mainlining the big options, each additional option only
resulted in small reductions (e.g. < 5k)

• Not worth maintaining in isolation

• Not enough incentive to accept into mainline

• Required too much knowledge to turn on/off configuration items

• Most developers prefer to keep features in kernel unless they understand the full impact
of removal

• Linux-tiny patches had to be maintained out-of-tree

PA12013-04-1237

Constraint objectives

• Constraint represents a change that can result in optimization by
the compiler

• Change can be automatically applied

• Robust across software versions

• ie. the change is not in the form of patches

• Cross-layer (both kernel and user-space)

• Ability to generate new constraints from previous ones

PA12013-04-1238

Mechanism

• Constraint configuration file

• Declaration of constraint type

• Information needed to apply the constraint

• Set of programs to modify the kernel source

• Started with a mixture of automation and some manual steps

• Targeted full automation

• Usually, replaced kernel source with comments

• Tools are run as a pre-build step

• Requires integration with the build system

PA12013-04-1239

Details for Auto-Reduce program

• Processes constraints.conf

• Has a declaration for each constraint

• Modifies kernel source code, in a way that compiler can
optimize

• Uses sub-module: ex. find_refs.py

• May compile kernel multiple times during application of
constraints

• It is NOT FAST

PA12013-04-1240

Source modifications

• Easy to clear modifications with 'git checkout'

• Should start with clean tree (to avoid losing local changes)

• Most common example is replacing code with
constants

• Try to keep original code in comment, so altered code
can be inspected (in case of bugs)

PA12013-04-1241

Constraint types

• Structure field values with constant values

• Allows removing the field from the structure

• Constant function argument values

• Limited set of values for function arguments

• Unused function calls

• Unused syscalls already dealt with

PA12013-04-1242

Constant structure field values

• This is the type for “uid==0”

• For this constraint type:

• Remove field from structure

• Locate all references to field

• Replace each reference with

constant (in source)

--- a/fs/fcntl.c
+++ b/fs/fcntl.c
@@ -208,5 +208,5 @@
 if (pid) {
 const struct cred *cred = current_cred();
- filp->f_owner.uid = cred->uid;
+ filp->f_owner.uid = /*cred->uid*/ 0;
 filp->f_owner.euid = cred->euid;
 }

--- a/include/linux/cred.h
+++ b/include/linux/cred.h
@@ -123,5 +123,5 @@ struct cred {
 #define CRED_MAGIC_DEAD 0x44656144
 #endif
- kuid_t uid; /* real UID of the task */
+// kuid_t uid; /* real UID of the task */
 kgid_t gid; /* real GID of the task */
 kuid_t suid; /* saved UID of the task */

PA12013-04-1243

Locating references

• “uid” is found in over 50 different structures in the kernel (file system,
accounting, struct cred)

• The one I mean to constrain is in struct cred, but “uid” appears in many others

• Over 2300 references to “uid” in kernel

• Lots of references to struct cred.uid via macros

• Some without any “uid” in the macro name

• Too difficult to do simple grep for, or write a parser for

PA12013-04-1244

Solution to Locating References

• Use the compiler

• Method:

• Remove field from structure

• Build the source code

• Record errors for missing field

• Use that to pinpoint line numbers

• Parse line to find actual field reference to remove

PA12013-04-1245

Problems with Using Compiler

• Only references that are built in the current configuration
are detected

• If configuration changes, then must re-run tool to reapply
constraints

• If macros are used, pattern for line parse is not obvious

• Must manually determine

macros to modify – ugh!

--- a/include/linux/cred.h
+++ b/include/linux/cred.h
-@@ -342,5 +343,5 @@
 })

-#define current_uid() (current_cred_xxx(uid))
+#define current_uid() 0
 #define current_gid() (current_cred_xxx(gid))
 #define current_euid() (current_cred_xxx(euid))

PA12013-04-1246

Kernel Constraint results

• Uid==0 constraint yielded code savings of 304 bytes

• Total of 45 changes made to code, including macro

• Only came up with 7 constraints, before termination of
project

• Total savings 2688 bytes

• OK – that's pretty disappointing

PA12013-04-1247

Constraints Discussion

• Had hoped that constraints would “cascade”

• Uid is used in multiple data structures, and all others derived
from this (well, kind of – fsuid)

• But, making it constant at the source (cred->uid) did not
propagate to other structures

• Possibly due to aliasing

•

PA12013-04-1248

Constraints Conclusion

• Uid==0 patch would never be accepted upstream

• I'm waiting a few kernel versions, to determine
“robustness” of patch-averse approach

• If there were thousands of constraints that could be
detected and applied automatically, the constraint
system might work

• Could gather constraints over time

• For now, constraint system is a failure...

Additional Research

PA12013-04-1250

Additional Research

• Some research that I found while investigating this

• I did not conduct this research, but merely present it here for
your consideration

• Warning: it's a bit old (2.4.25)

• Research done at University of Gent and University of Arizona

• Two areas:

• Link-time re-writing

• Cold-code compression

Link-time Binary Re-Writing

PA12013-04-1252

Link-time Binary Re-Writing

• Consists of a tool to examine the assembly code for a
program (from the binary) and do extra analysis

• Finds common instruction sequences

• Does code reach-ability analysis from a whole-program
graph

• May use original source code (1 did and 1 did not)

• Special techniques for finding indirect functions

PA12013-04-1253

Link-time Re-Writing Issues

• Big problem is use of indirect pointers

• Had to consider possible pointer assignments to get correct
function reach-ability graph

• Reduce set of functions that are assignable, to those whose
address was taken somewhere in the program

PA12013-04-1254

Link-time Re-Writing Results

• 23.23% code size reduction on 2.4.25 ARM kernel [Fe]

• About 12.6% image size reduction on 2.4.25 ARM
kernel [Chanet]

• About 186K

Cold-code compression

PA12013-04-1256

Cold-code Compression

• Mechanism to compress sections of the Linux kernel
in RAM

• Identify “cold code” through profiling

• Store those sections compressed

• Uncompress at runtime if a section area is ever
invoked

PA12013-04-1257

Cold-code Compression Details

• NOT a virtual memory approach (no faults taken)

• Code is replaced with stubs, which uncompress and
call real code when called

• Is one-way – code is never re-compressed

• Not all code will be uncompressed

• Only some exceptional code, and never any unreachable
code, will be decompressed

PA12013-04-1258

Cold-code Compression Issues

• Division of code into frozen and non-frozen parts

• Division of code into basic blocks, then instrumentation at runtime

• Compressing only blocks that exceeded a size threshold

• Managing concurrency when decompressing code

• Research implementation had fully re-entrant decompressor to avoid
locking (and potential priority inversion)

• Did a post-decompression check, to see if a block was decompressed
twice (indicating a decompression race condition), and freed the
second block

PA12013-04-1259

Cold-code Compression Results

• Yielded a net 17.8% reduction in uncompressed image
size

• 2.4.25 ARM kernel

• Including overhead of code for decompression mechanism
and stubs

• Reduced from 1209K to 1029K in size

• 180K net reduction

PA12013-04-1260

Conclusions

• Significant size reductions are available using:

• New compiler features (LTO)

• Aggressive specialization

• Kernel constraint value awaits further research

• Research indicates that additional savings are possible
using link-time re-writing or cold-code compression

• These should be re-verified – may be partially obsoleted by LTO

• More work is needed to continue fighting kernel bloat

Resources

PA12013-04-1262

Tiny Distribution

• Poky-tiny distribution in the Yocto Project

• See https://wiki.yoctoproject.org/wiki/Poky-Tiny

• Good for testing and further research

https://wiki.yoctoproject.org/wiki/Poky-Tiny

PA12013-04-1263

Papers

• Chanet D., De Sutter B., De Bus B., Van Put L., and De Bosschere K.
2007. Automated reduction of the memory footprint of the linux kernel.
ACM Transactions on Embedded Computer Systems Volume 6, 4,
Article 23

• From Ghent University

• He H., Trimble, J., Perianayagam S., Debray S., Andrews G. 2007
“Code Compaction of an Operating System Kernel” Proceedings of the
International Symposium on Code Generation and Optimization

• From University of Arizona

• Available at: http://www.cs.arizona.edu/solar/papers/kernel-compaction.pdf

PA12013-04-1264

eLinux.org page

• I will try to continue collecting information at:

• http://elinux.org/System_Size_Auto-Reduction

• This will include patches, yocto recipes, scripts and
results

Thanks for your time

Questions??

My e-mail: tim.bird(at)sonymobile.com

PA12013-04-1266

“SONY” or “make.believe” is a registered trademark and/or trademark of Sony Corporation.
Names of Sony products and services are the registered trademarks and/or trademarks of Sony Corporation or its Group companies.

Other company names and product names are the registered trademarks and/or trademarks of the respective companies

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

