
Satoru Moriya <satoru.moriya.br@hitachi.com>

Linux Technology Center

Yokohama Research Lab.

Hitachi, Ltd

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved

Reducing Memory

Access Latency

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
2

Contents

1. Introduction

2. Issues

3. solution

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved

1. Introduction

Background

• Hitachi focuses its business on
– Enterprise system

• Stock exchange system, banking system, etc.

– IT systems backing social infrastructure
• Train control system, plant control system, etc.

– Highly reliable cloud

• Some of them require very low latency
– Latency order

• Depend on each system (e.g. 1 msec/transaction)

– Determinism
• In those systems, there are time limits and we should not run

past it at any time (target: soft realtime)

• Minimizing worst latency
– Every process keeps to the time limit

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
4

1-1

Background – cont.

• Standard system

– Optimized for best average (throughput)

• We have to tune/change systems to get
required latency
– Entire system

• Hardware, firmware, OS, middleware & applications

– OS
• Cpu, memory, network, IRQ, etc.

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
5

1-2

This presentation focuses on latency in

memory management area

Our Goal of mm Improvement

• Make the worst memory access latency less
than 1 msec

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
6

1-3

Kind of pages Sensitive
for delay

detail

1
filebacked

unmapped N Pages are pagecache and so users think access delay due to
I/O is acceptable because applications issue I/O explicitly
when they access the data which is included in these pages.

2 mapped Y Pages are mapped to process’s memory space – e.g. library
page etc.
Users don’t accept access delay because application doesn’t
issue I/O explicitly when they access the data which is
included in these pages.-(*)

3 anonymous Y Pages are allocated by applications. Users don’t accept
access delay because (*).

This talk focuses on access latency to

“anonymous pages”

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved

2. Issues

Issues

• Linux uses free memory for pagecache as much as
possible

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
8

2-1

Kernel/process/cache

used cache (clean/dirty)

Linux memory management

•If an application allocates/accesses a new page…
•The kernel reclaims memory and then allocates memory (direct reclaim)
•The kernel may reclaim anon pages (swapout/swapin)

• 2 issues for memory access latency
– Reclaim in page alloc path (direct reclaim)

• It takes some time

• May need I/O

– swapout/swapin
• Put out anon pages to disk

• Need I/O to read data from disk at next access

Direct reclaim

• If Linux runs short of memory, it reclaims used pages
and then allocate new pages

• There are 2 type of reclaim
– Background reclaim (kswapd)

– Foreground reclaim (direct reclaim)
• Reclaim pages in process’s context

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
9

2-2

Memory Access (Page fault) Flow

page fault
(alloc mem)

No delay
Y

free memory

Background
reclaim

N
Page
reclaiming

Enough
memory

No delay

Direct reclaim
Not

enough
delay

swapout/swapin

• Anon pages may be reclaimed even if there are enough
pagecache pages

• /proc/sys/vm/swappiness
– We can configure how aggressive the kernel will swap anon pages

– Anon pages can’t avoid to be swapped out even if swappiness = 0

• When applications access the memory region which was
swapped out, the kernel has to swap in necessary pages

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
10

2-3

Memory Access Flow

access
memory

No delay
N

Swapped
out

Y

Read from
swap space

delay

Allocate
memory

Delay
(direct reclaim)

Page fault

How to get anon/filebacked scan ratio

1. ap = (swappiness+1) * (scanned+1)/(rotated+1)
 fp = (200 – swappiness) * (scanned+1)/(rotated+1)

2. anon = ap / ap + fp + 1
 file = fp / ap + fp + 1

3. nr_scan_anon = (anon_lru_length >> priority) * anon
 nr_scan_file = (file_lru_length >> priority) * file

In some situation, nr_scan_anon is not zero
and so anonymous pages may be reclaimed

Current Solution (1)

• Preallocation + mlock(2)/mlockall(2)

– Preallocate and call mlock/mlockall before starting
critical sections

– Ensure that necessary pages are resident in RAM

– Avoid page allocation and reclaim during critical
sections

 = Avoid delay

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
11

2-4

It needs to change application

Sometimes, we can’t do it…..

Current Solution (2)

• cgroup (memcg)

– Create a memcg

– Set a max limit (memory.limit_in_bytes)

– Put processes which consume pagecache (e.g. back
up process etc.) into it

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
12

2-5

If the process which has latency critical sections increases

pagecache, this solution may not work…. because current

memcg doesn’t have background reclaim

This solution doesn’t help swapout/swapin issue

Solution in UNIX

• Commercial UNIX has pagecache limitation feature
– It saves free memory by limiting the amount of cache

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
13

2-4

Kernel/process/cache Kernel/process cache

used cache (clean/dirty)
cache

(clean/dirty)
used free

With cache limitation Without cache limitation

Cache Limitation

•Reclaim cache or anonpage (swapout)
 and then allocate memory
•Reclaiming memory may cause delay
•Reclaiming anonpage may cause delay

•Reclaim cache only
•Keep free memory and just allocate
 memory from it
•Avoid delay

• Some enterprise users really want the feature because they use it in their current
system

• This feature was proposed to the kernel community several times. But it has not
been accepted yet.

• 2007: Limit the size of the pagecache
• http://lwn.net/Articles/218890/

• 2011: Unmapped page cache control
• https://lkml.org/lkml/2011/3/30/10

Solution in UNIX

• Commercial UNIX has pagecache limitation feature
– It saves free memory by limiting the amount of cache

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
14

2-4

Kernel/process/cache Kernel/process cache

used cache (clean/dirty)
cache

(clean/dirty)
used free

With cache limitation Without cache limitation

Cache Limitation

•Reclaim cache or anonpage (swapout)
 and then allocate memory
•Reclaiming memory may cause delay
•Reclaiming anonpage may cause delay

•Reclaim cache only
•Keep free memory and just allocate
 memory from it
•Avoid delay

• This feature was proposed to the kernel community several times.
But it has not been accepted yet.

• 2007: Needs/reasons were not discussed well.
• http://kerneltrap.org/mailarchive/linux-kernel/2007/1/24/47350

• 2010: Implement issue (Too big negative impact on fast path)
• https://lkml.org/lkml/2011/3/30/10

We need to take other approach…

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved

3. Solution

Approach in Linux

• Issues
– Direct reclaim

• Reclaim pages in page alloc path

• May need I/O

– swapout/swapin
• Put out anon pages to disk

• Need I/O to read data from disk at next access

• Issuing I/O in memory access path causes
huge latency

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
16

3-1

We need to avoid I/O in memory access path

Avoid I/O in direct reclaim

• Issue
– Huge latency is caused when the kernel writebacks in

direct reclaim

• Solution
– Avoid writeback in direct reclalim

 = reclaim only clean pages in direct reclaim

– The patch was proposed by Mel Gorman and merged
into 3.2

• mm: vmscan: do not writeback filesystem pages in direct reclaim

• https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ee72886d8
ed5d9de3fa0ed3b99a7ca7702576a96

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
17

3-2

We can avoid I/O in direct reclaim now!!

Avoid swapout/swapin

• Issue
– Huge latency is caused when an application accesses the swapped

out page

– We can’t avoid swapout even if swappiness == 0

• Solution
– Change the behavior with swappiness == 0

• With this value the kernel doesn’t swapout any anon pages while it
has enough filebacked pages

• If we set cgroup swappiness to 0, we can avoid swap out
completely for the processes in the cgroup

– I proposed the patch and it was merged into 3.5
• mm: avoid swapping out with swappiness == 0
• https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commi

t/?id=fe35004fbf9eaf67482b074a2e032abb9c89b1dd

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
18

3-3

We can avoid swapout with swappiness== 0!!

Status

• Issues
– Direct reclaim

• Reclaim pages in page alloc path

• May need I/O

– swapout/swapin
• Put out anon pages to disk

• Need I/O to read data from disk at next access

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
19

3-4

Fixed

Fixed

• In most cases, we can avoid latency issues

• But we can’t avoid direct reclaim itself

• Do we really need to avoid direct reclaim??

• How big does it impact ??

So…let’s measure the latency after improvement

Measure memory access latency

• Hardware

– CPU: 4

– Mem: 8GB

• Software
– RHEL6.2 + upstream kernel

– Filesystem: system(ext4), data(ext3)

• Test
– Measure memory access latency with heavy I/O

• Foreground task
– mapped_file_stream (modified from mmtest)

• Background task
– dd (Heavy I/O)

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
20

3-5

Result

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
21

3-6
19569 179839

306 208 232

Now…latency is improved significantly!

Still need page cache limitation?

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
22

3-8
• Some times we hit a bug….

– https://lkml.org/lkml/2013/2/11/570

• Basically, I agree with the approach community take
that fix the root source of issue

• In enterprise area, we’d like to avoid bugs as much
as possible in advance

• So…we’d like to have tunables like pagecache
limitation

• Introducing pagecache limit is difficult…

Thinking about other approach

https://lkml.org/lkml/2013/2/11/570
https://lkml.org/lkml/2013/2/11/570

extra_free_kbytes

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved

3-9
• Why pagecache limitation?

Avoid direct reclaim!

 • Issues

– Direct reclaim will occur when…

• Allocation is faster than background reclaim

• The amount of burst allocation is bigger than

the delta between wmark_low and

wmark_min

– All watermarks are set based on

min_free_kbytes

• Solution

“Add extra bytes between wmark_min and

wmark_low”

– Introduce new sysctl

• /proc/sys/vm/extra_free_kbytes

– Users can make the delta between

wmark_min and wmark_low bigger than

burst alloc size

 used allocate RAM

wmark
min

wmark
low

alloc size

min_free_kbytes

reclaim

kswapd wakeup

RAM delta

wmark
min

wmark
low

RAM

wmark
high

wmark
min

wmark
low

RAM

alloc size

min_free_kbytes
+ extra_free_kbytes

wmark
high

delta

<

extra_free_kbytes
We can avoid direct reclaim !!

Summary

• Issues
– Direct reclaim

• Reclaim in page allocation path

• I/O

– Swapout/swapin
• I/O

• Solution
– Avoid writeback in direct reclaim

– Avoid swapout with swappiness == 0

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
24

3-10

Latency issues have gone away in most cases

• For users who really need pagecache limitation
– extra_free_kbytes

– You should evaluate current kernel with your workload
• Linux may handle issues in your UNIX systems ;)

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved

4. Question and Discussion

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved

Thank you

Legal Statements

• Linux is a registered trademark of Linus Torvalds.

• UNIX is a registered trademark of The Open Group.

• All other trademarks and copyrights are the property of

their respective owners.

Copyright (c) 2013 Hitachi LTD., Systems Development Lab. All right reserved
27

