
Copyright © 2013 NTT DATA Corporation

30 May, 2013
Tetsuo Takata,

Platform Solutions Business Unit, System Platforms Sector
NTT DATA CORPORATION

Perf for User Space Program Analysis

2 Copyright © 2013 NTT DATA Corporation

Agenda

1. Introduction

2. What is perf?

3. Usage and usecases

4. A Use Case -- profiling a user space program

5. Conclusion and future work

Copyright © 2013 NTT DATA Corporation 3

Introduction

4 Copyright © 2013 NTT DATA Corporation

Background and goal

Goal:

we are going to share our experience with perf with other user space

developers and support engineers, by presenting

• information necessary to make good use of perf without knowing much

about the kernel, and

• a use case of perf where we analyzed a performance problem of a

middleware.

Background:
OSS has been used in many mission-critical systems, where every single
problem must be fixed fast and accounted for, and where tools assisting
troubleshooting is more important than anywhere else.

Perf is becoming a de facto standard of performance analysis tools for Linux
among many others. We think that perf is a very capable tool with very scarce
documentation. Therefore,

5 Copyright © 2013 NTT DATA Corporation

Troubleshooting Enterprise Systems

Trouble! Diagnosis Solution

Problem
definition

Elimination
Identification
of root cause First aid

Solution of
problem

Provide
temporary
measure(s) to
avoid the problem
and keep the
system running.

Understand the
problem through
information
gathered from
operators,
messages, etc.

Eliminate possible
causes by
collecting and
examining
information and
data.

Identify where
and how the
problem occurred.

Implement
measure(s) to
prevent the
problem.

Most time-
consuming part in
majority of cases

It follows the general troubleshooting process of diagnosis and solution, with
some restrictions, mostly on data collection, to keep systems up and running.

6 Copyright © 2013 NTT DATA Corporation

The Diagnosis Phase

What is it?

—To eliminate candidate causes of a problem by collecting and examining
information and data about the system under question.

Why do we do that?

—To implement right measure(s) to prevent the problem from recurring, and to
avoid wasting bullets as in a local saying—even a poor shooter can hit the mark
with many bullets.

Techniques include

—Overall analysis

message analysis

system statistics analysis

...

—Detailed analysis

tracing

profiling

probing

core dump analysis

...

7 Copyright © 2013 NTT DATA Corporation

Profiling as a Diagnosis Tool

 Profiling comes into play when there is a performance problem and
responsible piece of software is known, and used to measure how much
CPU time is spent where to narrow down the number of suspects.

 A profiler differs from a tracer, another performance analysis tool, in that
the former gather samples at fixed intervals while the latter collects
timestamps at specified places. A profiler, therefore, incurs less overhead
while a tracer can obtain accurate timing information.

 There are several profiler implementations currently available for Linux.

– perf: implemented in the kernel, actively developed.

– oprofile: implemented in the kernel.

– gprof: implemented in the user space, requiring a specific compile-time option.

– sysprof: implemented in the kernel, does overall system profiling.

8 Copyright © 2013 NTT DATA Corporation

Profiler for Enterprise Troubleshooting

A profiler has to satisfy the following to be used in enterprise settings:

 Little overhead

– Additional overhead to systems under investigation that are usually
under heavy load from performance problem(s) can lead to
malfunctioning of the profiler, or worse, bring the systems down.

– Controllable and Overhead, if any, must be under control and
predictable.

 No additional installation
– Any changes to a tested software configuration is not acceptable,

without testing.
 Wealth of information gathered

– There may not be a second or third chances.
 Presentation of information

– We have to be able to drill into plentiful information.

Copyright © 2013 NTT DATA Corporation 9

What is perf?

10 Copyright © 2013 NTT DATA Corporation

What is perf?

 perf(Performance Counters for Linux) is ...
- an integrated performance analysis tool on Linux kernel
- basically a profiler, but its tracer capabilities has been enhanced

and becomes an all-round performance analysis tool.

 Events
 for profiling

 hardwre event
 swevent
 ...

 for tracing
 trace point
 probe point

 Samples
 Events related information
 IP
 CALLCHAIN
 STACK
 TIME
 ...

11 Copyright © 2013 NTT DATA Corporation

perf events

Categories Descriptions Examples

Hardware events Event measurable by PMU of
processor. Data can be
collected without the
overhead though the contents
is dependent on type of
processors.

Cpu-cycles and cache-misses, etc.

Hardware cache
events

L1-dcache-load-misses and
branch-loads, etc.

Software events Event measurable by kernel
counter.s

Cpu-clock and page-faults,
etc.

Tracepoint events Code locations built into the
kernel where trace
information can be collected.

Sched:sched_stat_runtime
and
syscalls:sys_enter_socket, etc.

Probe events User-defined events
dynamically inserted into the
kernel. -

12 Copyright © 2013 NTT DATA Corporation

Userspace Kernel HW

perf event registration

Software event

Hardware event

enable ftrace events

Tracepoint event

Configure
PMU

perf commands

perf record XX

perf stat XX

perf top XX

register swevent
handler

perf_event_open()

perf commands register events by calling perf_event_open() system call,
which, in turn, registers them in hardware or software according to their types.

enable kprobes

Probe event

13 Copyright © 2013 NTT DATA Corporation

Hardware Event Overview(Intel)

ESCRs

MSR_BPU_COUNT
ER0

MSR_BPU_COUNT
ER1

MSR_BPU_COUNT
ER2

. . .

event
source

event
source

event
source

. . .

PMI

MSR_BPU
_CCCR0

MSR_BPU
_CCCR1

MSR_BPU
_CCCR2

overflow
Kernel

Collection of sample data on hardware events are mostly done by hardware.
A pair of Performance counter and CCCR records data at events selected by
an ESCR. Only when a Performance Counter overflows when the kernel
receives a PMI interrupt and copies information from the registers.

MSR_BSU
_ESCR0

MSR_FSB
_ESCR0

. . .

. . .

Performance
Counters

CCCRs

16 Copyright © 2013 NTT DATA Corporation

Kernel HW

SWEvent

timer interrupt
page fault etc.

Userspace

Event handling and sampling

The perf module collects samples when an event like HWevent occurs. Data to be
collected is specified as sample types when a user invokes the perf command. They
include IP (Instruction Pointer), user or kernel stack, timer and mostly taken from
hardware. Samples collected are written to memory area mapped by the perf command so
that it can retrieve them without kernel-to-user copying.

context switch
cpu migration etc.

perf module perf commands

mmaped
pages

sample source
regs,timer,etc. sample

HWevent Trace Event

Probe Event

Copyright © 2013 NTT DATA Corporation 17

Usage and a use case

18 Copyright © 2013 NTT DATA Corporation

Usage of perf

Usage of perf command


perf <command> [option]

Commands Descriptions

annotate Read perf.data* and display annotated code

diff
Read two perf.data* files and display the differential
profile

probe Define new dynamic trace-points

record Run a command and record its profile into perf.data*

report Read perf.data* and display the profile

script Read perf.data* and display trace output

stat
Run a command and gather performance counter
statistics

timechart Tool to visualize total system behavior during a workload

top Generate and displays a performance counter profile

trace Show the events associated with syscalls, etc

19 Copyright © 2013 NTT DATA Corporation

Usage of perf (cont’d)

List of perf commands

 Commands Descriptions

archive Create archive with object files with build-ids

bench General framework for benchmark suites

buildid-cache Manage build-id cache

buildid-list List the build-ids in a perf.data* file

evlist Displays the names of events sampled in a perf.data* file

inject Filter to augment the events stream

kmem Tool to trace/measure kernel memory properties

kvm Tool to trace/measure KVM guest OS

list List all symbolic event types

lock Analyze lock events

sched Tool to trace/measure scheduler properties (latencies)

test Runs sanity tests

perf.data* is created by perf record

20 Copyright © 2013 NTT DATA Corporation

perf record & perf report

perf record records events. Recorded data is
saved as perf.data by default. We can confirm
this data with the perf report.

Use cases
 - Record behavior of a specific command in detail
 - Analyze a suspicious process in detail
 - Determine a cause(s) of poor performance of a
process

21 Copyright © 2013 NTT DATA Corporation

Options Descriptions

-e Designate an event name

-o
Designate a output filename (perf.data by
default)

-p Designate a process ID

-t Designate a thread ID

-a Collect data from all of the processors

-C
Designate a core(s) from which the command
collect data

perf record - options -

22 Copyright © 2013 NTT DATA Corporation

perf record - example -

perf record stress --cpu 4 --io 2 --vm 2 --timeout
10s
stress: info: [3765] dispatching hogs: 4 cpu, 2 io, 2 vm, 0 hdd
stress: info: [3765] successful run completed in 10s
[perf record: Woken up 5 times to write data]
[perf record: Captured and wrote 1.008 MB perf.data (~44044
samples)]

ls
perf.data

23 Copyright © 2013 NTT DATA Corporation

Options Descriptions

-i
Designate a input file (perf.data by default
when it is not designated)

-s Sort data by given key such as pid

perf report - options -

24 Copyright © 2013 NTT DATA Corporation

perf report - example -

perf report | cat -n
…
22 # Overhead Command Shared Object Symbol
 23 #
 24 #
 25 35.40% stress libc-2.12.so [.] __random_r
 26 15.25% stress libc-2.12.so [.] __random
 27 14.70% stress stress [.] 0x0000000000001bd1
 28 7.07% stress [kernel.kallsyms] [k] acpi_pm_read
 29 5.16% stress [kernel.kallsyms] [k] _spin_unlock_irqrestore
 30 5.06% stress [kernel.kallsyms] [k] ioread32
 31 4.95% stress [kernel.kallsyms] [k] finish_task_switch
 32 4.85% stress libc-2.12.so [.] rand
 33 2.11% stress [kernel.kallsyms] [k] sync_inodes_sb
 34 1.22% stress [kernel.kallsyms] [k] iowrite32
 35 0.69% stress [kernel.kallsyms] [k] clear_page_c
 36 0.33% stress [ahci] [k] ahci_interrupt
 37 0.24% stress [kernel.kallsyms] [k] __do_softirq
 38 0.14% stress [kernel.kallsyms] [k] compact_zone
 39 0.11% stress [kernel.kallsyms] [k] copy_page_c

25 Copyright © 2013 NTT DATA Corporation

perf report - example -

26 Copyright © 2013 NTT DATA Corporation

Use cases
 - Conduct a whole system profiling
 - Conduct a system monitoring in real time

perf top

perf top can profile a system in real time. Just
like the top command in Linux, it can
dynamically conduct a system monitoring

27 Copyright © 2013 NTT DATA Corporation

perf top - example -

28 Copyright © 2013 NTT DATA Corporation

perf anotate

perf anotate reads perf.data and display
annotated decompiled code.

Use case
 - Identify time-consuming part(s) in source code

29 Copyright © 2013 NTT DATA Corporation

perf annotate - options -

Options Descriptions

-i Specify input file name (perf.date by default)

-s Set symbol to annotate

-v Display result more verbosely

-l Print matching source lines

-P Make displayed pathnames as full-path

-k Specify the vmlinux path

30 Copyright © 2013 NTT DATA Corporation

perf annotate - examples -

perf record ./a.out
perf annotate –s main

int main(void){
 int i;
 for(i=0; i<1000000000; i++);
 return 0;}

31 Copyright © 2013 NTT DATA Corporation

perf diff

perf diff reads two perf.data files and display
the differential profile.

Use case
 - See differences between updated perf.data and
older one.

32 Copyright © 2013 NTT DATA Corporation

Options Descriptions

-S Specify only consider symbols

-s Sort by key(s): PID, comm, dso, symbol

perf diff - options -

33 Copyright © 2013 NTT DATA Corporation

perf diff - example -

perf record -o perf1.data ls /boot
perf record -o perf2.data ls /etc/
perf diff perf1.data perf2.data

Event 'cpu-clock'

Baseline Delta Shared Object Symbol
........

 +20.00% ld-2.12.so [.] dl_main
 +20.00% ld-2.12.so [.] do_lookup_x
 +20.00% [kernel.kallsyms] [k] up_read
 +20.00% [kernel.kallsyms] [k] __find_get_block
 +20.00% [kernel.kallsyms] [k] copy_from_user
 50.00% -50.00% [kernel.kallsyms] [k] unmap_vmas
 50.00% -50.00% [kernel.kallsyms] [k] mem_cgroup_charge_common

Copyright © 2013 NTT DATA Corporation 34

A Use Case -- profiling a userspace program

35 Copyright © 2013 NTT DATA Corporation

Profiling PostgreSQL -- bakground

Background

Most developers and support engineers of middleware feel uncomfortable with hardware
and kernel level information returned by kernel profilers, and think rather in terms of
functions or API implemented by themselves. For a profiler to be useful for them, it should
be able to present information specific to an application while abstracting lower-level
details away if possible.

Userland profiling and PostgreSQL

A large userland program like a database management system would frequently benefit
from a built-in tracing facility to find, for example, where performance regression comes
from. Its implementation is not, however, always welcome by developer community
because of maintenance burden, e.g. failed attempt at tracer in PostgreSQL (*).

*) http://www.postgresql.org/message-id/20090309125146.913C.52131E4D@oss.ntt.co.jp
 http://www.postgresql.org/message-id/20090714183127.946A.52131E4D@oss.ntt.co.jp

36 Copyright © 2013 NTT DATA Corporation

Profiling PostgreSQL

The failed proposal tried to produce output like the figure. It is commonplace in

commercial DBMSes and highly desirable for OSS ones like PostgreSQL as well.

Our use case does not replicate it visually, but it still shows that perf can be used

to do similar type of analysis.

Types Descriptions (typical activity)

Query parse/planning, Read/Write data from/to shared
memory, Data sort on local memory

Receive Query from client, Send search results to client

Just idle, sleep

TXN file open/close, Write and Flush data to TXN file

File open/close, Read/Write from/to file via system call

Acquire/Release/Waite rows/table level lock

Acquire/Release/Waite light-weight lock for shared data

Performance Usage Graph
(Image)

CPU

NETWORK

IDLE

XLOG

DATA

LOCK

LWLOCK

37 Copyright © 2013 NTT DATA Corporation

Benchmark analysis - overview

We ran a benchmark program to issue large amount of insert statements against
PostgreSQL at the same time. It is expected to cause lock contention, which is
hard to analyze without the help of a profiler like perf.

- Environment(Server)
 CPU: Intel(R) Xeon(R) CPU E5-2660
 2.20GHz * 4 CPUs (32 Logical Cores)
 Memory: 24GB
 kernel: 3.9.2
 PostgreSQL: 9.2.44

PostgreSQL

pgbench

pgbench

pgbench BEGIN;
INSERT INTO i_table VALUES (:user_id, 'c4ca4238a0b923820dcc509a6f75849b');
INSERT INTO i_table VALUES (:user_id, 'c81e728d9d4c2f636f067f89cc14862c');
INSERT INTO i_table VALUES (:user_id, 'eccbc87e4b5ce2fe28308fd9f2a7baf3');
INSERT INTO i_table VALUES (:user_id, 'a87ff679a2f3e71d9181a67b7542122c');
INSERT INTO i_table VALUES (:user_id, 'e4da3b7fbbce2345d7772b0674a318d5');
END;

38 Copyright © 2013 NTT DATA Corporation

Benchmark Result

INSERT/sec.

connection

Number of inserts per second stopped grow linearly in 100--200
connections, suggesting existence of performance neck(s), and it went
down with more than 300 connections, a tendency frequently observed
when a lock is contented.

39 Copyright © 2013 NTT DATA Corporation

Analysis using perf call graph function

 17.03% postgres postgres [.] s_lock

 |

 --- s_lock

 |

 |--79.95%-- LWLockAcquire

 | |

 | |--56.91%-- GetSnapshotData

 | | GetTransactionSnapshot

 | | |

 | | |--94.56%-- exec_simple_query

 | | | PostgresMain

 | | | ServerLoop

 | | | PostmasterMain

 | | | main

 | | | __libc_start_main

 | | | _start

The "--callgraph dwarf" option
turns on the use of DWARF, the
standard debugging information
format on Linux.

The option enables sampling of
user as well as kernel stack
information and generation of
callgraphs containing symbols in
user programs.

The DWARF mode should be used
with caution because the amount
of data collected is far from a
dwarf and an order of magnitude
larger than the default mode.

40 Copyright © 2013 NTT DATA Corporation

The problem and solution

Snapshot

GetSnapshotData(Snapshot snapshot)

{

...

 LWLockAcquire(ProcArrayLock, LW_SHARED);

...

numProcs = arrayP->numProcs;

 for (index = 0; index < numProcs; index++)

 {

...

 }

The culprit was a function
where PostgreSQL found the
oldest transaction from the list
of active transaction id's. As it
searched through an array
containing entries for all
prcesses, it took time
propotional to number of
process (O(N)). If there were
more processes, it was more
likely to cause lock contention.

As the benchmark program committed
insert statements in batches, the lock is
expected to be contended less often if
the size of the batch was made larger,

from 5 to 10 in our case.

41 Copyright © 2013 NTT DATA Corporation

Testing the solution

The larger batch size successfully raised the maximum

throughput, proving the analysis!!

42 Copyright © 2013 NTT DATA Corporation

Lock contention before and after the solution

The perf diff was used to see any changes in time spent for the lock.

The 5.64% decrease in s_lock indicates that the solution eased the lock contention.

Baseline Delta Shared Object Symbol
........

 29.77% -5.64% postgres [.] s_lock
 2.58% -0.25% postgres [.] GetSnapshotData
 1.54% +0.64% postgres [.] base_yyparse
 2.00% -0.04% [kernel.kallsyms] [k] update_cfs_rq_blocked_load
 2.38% -0.54% [kernel.kallsyms] [k] update_blocked_averages
 1.67% -0.32% postgres [.] AllocSetAlloc
 1.50% -0.16% postgres [.] SearchCatCache
 0.97% +0.08% postgres [.] hash_search_with_hash_value
 0.53% +0.49% postgres [.] MemoryContextAlloc
 0.07% +0.93% postgres [.] heap_fill_tuple
 2.45% -1.51% [kernel.kallsyms] [k] tg_load_down
 1.24% -0.41% [kernel.kallsyms] [k] _raw_spin_lock

43 Copyright © 2013 NTT DATA Corporation

Side effect of the DWARF option

Turning the DWARF option on alone can cause significant decrease in
performance. Though the exact figure depends on types of workload,
we observed up to 10% performance penalty. This is due to much
increased amount of I/O perf itself does to store sampled data, and
can be controlled reducing sampling frequency or damp stack size.

perf.data size
 avg.(60sec)

fp 187M

dwarf 8G

44 Copyright © 2013 NTT DATA Corporation

Controlling the DWARF option

We ran the perf with the DWARF option enabled and sampling frequency
reduced to 1 from the default value of 4000 by the "--freq" option,
and found it can successfully reduce its impact on performance in
the batch mode.

perf.data size
 avg.(60sec)

fp 187M

dwarf 8G

dwarf(freq=1) 13M

Copyright © 2013 NTT DATA Corporation 45

Conclusion

46 Copyright © 2013 NTT DATA Corporation

Future works

Tracing PostgreSQL by perf probe
Efficient profiling data analysis of PostgreSQL by

perf script
Profiling other middleware than PostgreSQL

