
Fusion-io Confidential—Copyright © 2013 Fusion-io, Inc. All rights reserved. Fusion-io Confidential—Copyright © 2013 Fusion-io, Inc. All rights reserved.

Improve Linux SWAP For High Speed Flash
Storage

Shaohua Li <shli@fusionio.com>

Background

▸ Partially replace DRAM with Flash storage (SSD)
▸ Compared to DRAM, Flash has:

•  Low price
•  High density
•  Low power

▸ Reasonable latency is tolerable

How does swap work?

Page in active LRU list

Page in inactive LRU list

Add page to swap cache

Unmap page and set PTE

Pageout page

Remove page from swap cache

Free page

Page fault

Allocate new page

Add page to swap cache

Pagein page

Set PTE

SWAPOUT SWAPIN

SSD specific characteristics

▸ Fast
▸ No seek penalty
▸ Big size request has better throughput
▸ High iodepth has better throughput
▸ Discard

SWAPOUT – TLB flush

▸ At least 2 TLB flushes
•  Clear PTE ‘A’ bit
•  Clear PTE ‘P’ bit

▸ Overhead is quite high
•  TLB flush is page based
•  TLB flush is involved by several tasks

▸ Solution:
•  Improve smp_call_function_many()
•  The first TLB flush can be removed in x86?
•  Batch TLB flush?

SWAPOUT – swap_map scan

▸ swap_map entry - in-memory data structure to track
swap disk usage

▸ Slow linear memory scan to find a cluster (128
adjacent pages) - to produce big size IO request

▸ Solution: cluster list
•  Pros - O(1) algorithm
•  Cons - restrictive cluster alignment
•  Only enabled for SSD

SWAPOUT – IO pattern

▸ Interleaved IO pattern
•  Multiple reclaimers
•  New found cluster is shared by all reclaimers

▸ Block layer can’t merge the interleaved IO
completely

▸ Solution: per-cpu cluster
•  Reclaimer does sequential IO
•  Easy to do IO merge in block layer

SWAPIN

▸ Page fault does sync IO - iodepth 1, page size IO
request

▸ Need swap readahead to produce:
•  Big size IO request
•  High iodepth IO
•  Parallel IO and CPU

▸ Userspace readahead API
•  madvise(MADV_WILLNEED) is extended to do swap

prefetch

SWAPIN - cont

▸ In-kernel readahead
•  Arbitrary readahead (always 8 pages)
•  Random access workload
▸ Unnecessary currently
▸ Waste IO and increase memory pressure
▸  Let readahead aware workload is random

•  Sequential access workload
▸ Not enough currently
▸ Hard to do - can’t guarantee sequentially accessed pages

swapped out sequentially
•  Sequentially accessed pages might not live adjacently in LRU

list
•  Adjacent pages of LRU list might be swapout by different

reclaimers

Lock contentions

▸ Lock contentions are high
•  Concurrent swapout - kswapd, direct page reclaim
•  Concurrent swapin – page fault from each task

▸ Solution:
•  anon_vma mutex - now it’s a rw_semaphore
•  swap_lock and swap address space lock
▸ Per-swap lock now (a workaround)
▸ Still have lock contention with very high speed SSD

SWAP discard

▸ Discard is important to optimize SSD write
throughput

▸ swap discard implementation is synchronous
•  Block layer discard API is sync (introduce delay)
•  Discard just before write is useless

▸ Solution: async swap discard
•  No delay
•  Discard and write can run in the same time
•  Discard is cluster based

Other issues

▸ Page reclaim policy – bias swap?
▸ Huge page swap

Benchmark – sequential workload

Benchmark – random workload

f u s i o n i o . c o m | R E D E F I N E W H A T ’ S P O S S I B L E

