e

[FUSION-iO

Improve Linux SWAP For High Speed Flash
Storage

Shaohua Li <shli@fusionio.com>

Fusion-io Confidential—Copyright © 2013 Fusion-io, Inc. All rights reserved.

Background FUSION-O

Partially replace DRAM with Flash storage (SSD)

Compared to DRAM, Flash has:
Low price
High density
Low power

Reasonable latency is tolerable

How does swap work? FUSION-O

— SWAPIN

Page fault

Page in active LRU list ‘

Page in inactive LRU list

Allocate new page

Add page to swap cache

Unmap page and set PTE ‘ Add page to swap cache

Pageout page (
‘ Pagein page

Remove page from swap cache

‘ Set PTE

Free page

N
4% SSD specific characteristics FUSION-iO
Fast
No seek penalty
Big size request has better throughput
High iodepth has better throughput
Discard

%

SWAPOUT - TLB flush FUSION-O

At least 2 TLB flushes
Clear PTE ‘A’ bit
Clear PTE ‘P’ bit

Overhead is quite high
TLB flush is page based
TLB flush is involved by several tasks

Solution:
Improve smp_call_function_many()
The first TLB flush can be removed in x867
Batch TLB flush?

%

SWAPOUT - swap_map scan FUSION-iO

swap_map entry - in-memory data structure to track
swap disk usage

Slow linear memory scan to find a cluster (128
adjacent pages) - to produce big size 10 request
Solution: cluster list

Pros - O(1) algorithm

Cons - restrictive cluster alignment

Only enabled for SSD

%

SWAPOUT - IO pattern FUSION-O

Interleaved 1O pattern

Multiple reclaimers

New found cluster is shared by all reclaimers
Block layer can’t merge the interleaved IO
completely
Solution: per-cpu cluster

Reclaimer does sequential 10

Easy to do IO merge in block layer

%

SWAPIN FUSION-iO

Page fault does sync 10 - iodepth 1, page size IO
request
Need swap readahead to produce:

Big size 10 request

High iodepth IO

Parallel IO and CPU

Userspace readahead API

madvise(MADV_WILLNEED) is extended to do swap
prefetch

SWAPIN - cont FUSiON-iO

In-kernel readahead
Arbitrary readahead (always 8 pages)

Random access workload
Unnecessary currently
Waste 10 and increase memory pressure
Let readahead aware workload is random

Sequential access workload

Not enough currently

Hard to do - can’t guarantee sequentially accessed pages

swapped out sequentially
Sequentially accessed pages might not live adjacently in LRU
list
Adjacent pages of LRU list might be swapout by different
reclaimers

%

Lock contentions FUSION-iO

Lock contentions are high
Concurrent swapout - kswapd, direct page reclaim
Concurrent swapin — page fault from each task

Solution:
anon_vma mutex - now it's a rw_semaphore
swap_lock and swap address space lock

Per-swap lock now (a workaround)
Still have lock contention with very high speed SSD

%

SWAP discard FUSiON-iO

Discard is important to optimize SSD write

throughput

swap discard implementation is synchronous
Block layer discard API is sync (introduce delay)
Discard just before write is useless

Solution: async swap discard
No delay
Discard and write can run in the same time
Discard is cluster based

%

Other issues FUSION-IO

Page reclaim policy — bias swap?
Huge page swap

Benchmark — sequential workload

Swap Sequential Workload

FUSION-IO

3500 T T T
SwapIN-nopatch =—
SwapOUT-nopatch =
SwapIN-patch =—
SwapOUT-patch =
3000 ~“ —
2500 H —
0
3 2000 —
z
+
3
o
<
[o))
3
2 1500 -
|_
1000 4
200 W—
W—‘ W
0 - J \ | I I i
0 50 100 150 200 250 300

Runtime(S)

Benchmark — random workload FUSION-iO

Swap Random Workload

3500 T T T
SwapIN-nopatch =—
SwapOUT-nopatch =
SwapIN-patch =——
SwapOUT-patch =
3000 H —
2500 H —
0
3 2000 H —
z
+
3
o
<
[o)]
3
E 1500 —
|_
1000 =
N S " ey n— e o o
500 —
vV — gt e — s s s, o,
0 - AJ A - | | l i

0 50 100 150 200 250 300
Runtime(S)

fusionio.com | REDEFINE WHAT'S POSSIBLE

B ——

