
Scaling Twitter with Open Source
Chris Aniszczyk (@cra)

Head of Open Source, Twitter
http://aniszczyk.org

!

#eumjapan

http://aniszczyk.org

Reminder: Please Tweet!
@cra

#eumjapan

Agenda

Twitter Scale
Evolution of the Twitter Stack

Twitter Stack Sampling
Concluding Thoughts

What is Twitter?
Twitter is a public real-time information network that

connects you to what you find interesting
!

The heart of Twitter: tweets

sizeof(1 tweet) = 140 characters
 200 bytes

!

doesn’t sound like much?

≈

┈┈┈┈┈◢◤┈┈┈┈┈┈┈┈ 
┈┈◢▇▇▇▇▇◣┈┈┈┈┈┈ 
┈┈▇▇▇▇▇◤┈┈THANK┈┈ 
┈┈▇▇▇▇▇┈┈┈┈YOU┈┈ 
┈┈◥▇▇▇▇◣┈┈┈STEVE┈ 
┈┈┈◥▇◤◥▇◤┈┈┈┈┈┈
#ThankYouSteve #TwitterArt
6 Oct via web Favorite Retweet Reply

@tw1tt3rart
TW1TT3Rart

“Creativity comes from constraint”
“Brevity is the soul of the wit”

What is the scale of Twitter?

500,000,000+ Tweets / Day
3,500,000,000+ Tweets / Week

3.5B Tweets / Week

6000+ Tweets / Second
(steady state)

!

However, there are peaks!

≈

Miyazaki 2011
25,088 TPS (NYE 2013: 33,338 TPS)

バルス! (“Death to Twitter”)

Miyazaki 2013
25,088 TPS 143,199 TPS
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

バルス! (“Death to Twitter”)

https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

Twistory
Scaling the Twitter Stack

2006: A simple idea...

Routing Presentation Logic Storage

Monorail (Ruby on Rails)
MySQL

2008: Growing Pains

Routing Presentation Logic Storage

Monorail (Ruby on Rails)
MySQL

Tweet Store

Flock

Redis

Memcache

Cache

2009+: Crazy Growth

201320132013201320132010 20132006 2010

2006 2009 2013

250M

500M

2010

2010: World Cup Woes

https://blog.twitter.com/2010/2010-world-cup-global-conversation
http://bits.blogs.nytimes.com/2010/06/15/twitter-suffers-from-a-number-of-technical-glitches

https://blog.twitter.com/2010/2010-world-cup-global-conversation

What was wrong?
Fragile monolithic Rails code base: managing raw
database and memcache connections to rendering the

site and presenting the public APIs
!

Throwing machines at the problem: instead of
engineering solutions

!

Trapped in an optimization corner: trade off readability
and flexibility for performance

!

Whale Hunting Expeditions
We organized archeology digs and whale hunting

expeditions to understand large scale failures
!

Re-envision the system?
We wanted big infra wins: in performance, reliability and

efficiency (reduce machines to run Twitter by 10x)
!

Failure is inevitable in distributed systems: we
wanted to isolate failures across our infrastructure

!

Cleaner boundaries with related logic in one place:
desire for a loosely coupled services oriented model at the

systems level
!

Ruby VM Reflection
Started to evaluate our front end server tier:

CPU, RAM and network
!

Rails machines were being pushed to the limit: CPU
and RAM maxed but not network (200-300 requests/host)

!

Twitter’s usage was growing: it was going to take a lot
of machines to keep up with the growth curve

!

JVM (Java) Experimentation
We started to experiment with the JVM...

!

Search (Java via Lucene)
http://engineering.twitter.com/2010/10/twitters-new-search-architecture.html

!

FlockDB: Social Graph (Scala)
https://blog.twitter.com/2010/introducing-flockdb

https://github.com/twitter/flockdb

!

...and we liked it, enamored by JVM performance!
!

We weren’t the only ones either: http://www.slideshare.net/pcalcado/from-a-monolithic-ruby-on-rails-app-to-the-jvm

http://engineering.twitter.com/2010/10/twitters-new-search-architecture.html
https://blog.twitter.com/2010/introducing-flockdb
http://www.slideshare.net/pcalcado/from-a-monolithic-ruby-on-rails-app-to-the-jvm

The JVM Solution
Level of trust with the JVM with previous experience

!

JVM is a mature and world class platform
!

Huge mature ecosystem of libraries
!

Polyglot possibilities (Java, Scala, Clojure, etc)

Decomposing the Monolith
Created services based on our core nouns:

!

Tweet service
User service

Timeline service
DM service

Social Graph service
....
!

Routing Presentation Logic Storage

MySQL

Tweet Store

Flock

Redis

Memcached

Cache

TFE

(reverse proxy)

Monorail

Tweet Service

User Service

Timeline
Service

SocialGraph
Service

DM Service

User Store

API

Web

Search

Feature X

Feature Y

HTTP THRIFT THRIFT*

Twitter Stack
A peak at some of our technology

Finagle, Scalding and Mesos

Services: Concurrency is Hard
Decomposing the monolith: each team took slightly

different approaches to concurrency
!

Different failure semantics across teams: no
consistent back pressure mechanism

!

Failure domains informed us of the importance of
having a unified client/server library: deal with failure

strategies and load balancing
!

Hello Finagle! (Scala-based)
http://twitter.github.io/finagle

Used by Twitter, Nest, Soundcloud, Foursquare and more!

http://twitter.github.io/effectivescala/#Concurrency

Finagle Programming Model
Takes care of: service discovery, load balancing, retrying,

connection pooling, stats collection, distributed tracing
!

Future[T]: modular, composable, async, non-blocking
I/O
!

http://twitter.github.io/effectivescala/#Concurrency

http://twitter.github.io/effectivescala/#Concurrency

Hadoop with Scalding
Services receive a ton of traffic and generate a ton

of use log and debugging entries.
!

@Scalding is a open source Scala library that makes
it easy to specify MapReduce jobs with the benefits

of functional programming!
!

!

https://github.com/twitter/scalding
https://github.com/twitter/scalding/wiki/Rosetta-Code

https://github.com/twitter/scalding
https://github.com/twitter/scalding/wiki/Rosetta-Code

MySQL Storm Rails Hadoop memcached

Datacenter: Static Partitioning

MySQL Storm Rails Hadoop memcached

Failure Happens All The Time

Data Center Evils
The evils of single tenancy and static partitioning

Different jobs... different utilization profiles...
Can we do better?

STATIC PARTITIONINGDATACENTER

0%

33%

0%

33%

0%

33%

Borg and The Birth of Mesos
Google was generations ahead with Borg/Omega

“The Datacenter as a Computer”
http://research.google.com/pubs/pub35290.html (2009)

!

engineers focus on resources needed; mixed workloads possible

Learn from Google and work w/ university research!
http://wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos

DATACENTER

http://research.google.com/pubs/pub35290.html
http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos

Mesos, Linux and cgroups
Apache Mesos: kernel of the data center

obviates the need for VMs* (aggregation; not virtualization)
isolation via Linux cgroups (CPU, RAM, network, FS)

reshape clusters dynamically based on resources
multiple frameworks; scalability to 10,000s of nodes

Datacenter Operating System
Apache Mesos: kernel of the data center

Mesos

service batch storage …streaming

Batch CPUs become available…

Add more storage… utilize more resources for services…

For more details, watch: https://www.youtube.com/watch?v=r7qN8QwGv2w

https://www.youtube.com/watch?v=r7qN8QwGv2w

Two Level Scheduling
Think non-blocking sockets in the kernel!

masters

framework

resources are allocated via
resource offers	

!
a resource offer
represents a snapshot of
available resources (one
offer per host) that a
framework can use to
run tasks

masters

framework

a task can use a subset of an offer ;

task	

3 CPUs	

2 GB RAM

offer	

hostname	

4 CPUs	

4 GB RAM

offer	

hostname	

4 CPUs	

4 GB RAM

offer	

hostname	

4 CPUs	

4 GB RAM

offer	

hostname	

4 CPUs	

4 GB RAM

frameworks use offers to perform
its own scheduling

kernel

application

write(s, buffer, size);

kernel

application

42 of 100 bytes written!

Data Center Computing
Reduce CapEx/OpEx via efficient utilization of HW

http://mesos.apache.org

0%

33%

0%

33%

0%

33% 0%

25%

50%

75%

100%

reduces latency!

reduces CapEx and OpEx!

http://mesos.apache.org

How did it all turn out?
Not bad... not bad at all...

!

Where did the fail whale go?

Site Success Rate Today :)

2006 2010 2014

World Cup

not a lot of traffic

Off the monorail

99._%

100%

Performance Today :)

Growth Continues Today...

3500+ Employees Worldwide
50% Employees are Engineers
284M+ Active Users
500M+ Tweets per Day
35+ Languages Supported
78% Active Users are on Mobile
200+ Open Source Projects

Concluding Thoughts
Lessons Learned

Lesson #1
Embrace open source

best of breed solutions are open these days
learn from your peers code and university research
don’t only consume, give back to enrich ecosystem:

http://twitter.github.io

http://twitter.github.io

Lesson #2
Incremental change always wins

increase chance of success by making small changes
small changes add up with minimized risk

loosely coupled micro services work

Lesson #3
“Data center as a computer” is

the future direction of
infrastructure

Efficient use of hardware saves money
Better programming model (large cluster as single resource)

Thanks for listening!
(hope you learned something new, see opensource.twitter.com)

remember, feel free to tweet me #eumjapan

@cra / @TwitterOSS
zx@twitter.com

http://opensource.twitter.com
mailto:zx@twitter.com

Resources

https://github.com/twitter/finagle
https://github.com/twitter/zipkin

https://github.com/twitter/scalding
http://mesos.apache.org

http://wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos
http://mesosphere.io/2013/09/26/docker-on-mesos/

http://typesafe.com/blog/play-framework-grid-deployment-with-mesos
http://strata.oreilly.com/2013/09/how-twitter-monitors-millions-of-time-series.html

http://research.google.com/pubs/pub35290.html
http://nerds.airbnb.com/hadoop-on-mesos/

http://www.youtube.com/watch?v=0ZFMlO98Jk

https://github.com/twitter/finagle
https://github.com/twitter/zipkin
https://github.com/twitter/scalding
http://mesos.apache.org
http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos
http://mesosphere.io/2013/09/26/docker-on-mesos/
http://research.google.com/pubs/pub35290.html
http://nerds.airbnb.com/hadoop-on-mesos/
http://www.youtube.com/watch?v=0ZFMlO98Jk

