Scaling Twitter with Open Source

Chris Aniszczyk (@cra)
Head of Open Source, Twitter
http://aniszczyk.org

eumjapan

http://aniszczyk.org

Reminder: Please Tweet!
@cra
#eumjapan

Agenda

Twitter Scale
Evolution of the Twitter Stack
Twitter Stack Sampling
Concluding Thoughts

What is Twitter?

[witter is a public real-time information network that
connects you to what you find interesting

The heart of Iwitter: tweets

sizeof(1 tweet) = 140 characters
~ 200 bytes

doesn’t sound like much?

ThankYouSteve #TwitterArt

6 Oct via web Favorite Reply

“Creativity comes from constraint”
“Brevity 1s the soul of the wit”

What is the scale of Twitter?

500,000,000+ Tweets / Day
3,500,000,000+ Tweets / Week

3.5B Tweets / Week

N
~Nv

6000+ Tweets / Second

(steady state)

However, there are peaks!

Miyazaki 2011
25,088 TPS (NYE 2013: 33,3

« v Twitter Comms &

= @twittercomms
On Dec 9, the television screening in Japan of Hayao Miyazaki’s
“Castle in the Sky” led to 25,088 Tweets per second - a new

Twitter record.
& Reply T} Retweet W Favorite

13 Dec 11

Miyazaki 2013
25-088-TPS 143,199 TPS

htips://blog.twitter.com/2013/new-tweets-per- second recorﬁ #glhjpw

o } }“\\' }

v’h\

14:22:59

https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

Twistory
Scaling the Twitter Stack

2006: A simple idea...

Routing

Presentation

Logic

Monorail (Ruby on Rails)

Storage

MySQL '

FAIL WHALE

Twitter: Failure is an option. At least once a day, or whenever you need it.

Routing Presentation Logic

Monorail (Ruby on Rails)
gy «‘
| ¥3)

Storage

MySQL

‘Tweet Store'

Flock

Memcache

Redis

il

500M

250M

2006 2009 2010 2013

< 3283 TPS (record)
= v D

Group Stage

Knockout Rounds

https://blog.twitter.com/2010/2010-world-cup-global-conversation
http://bits.blogs.nytimes.com/2010/06/15/twitter-suffers-from-a-number-of-technical-glitches

https://blog.twitter.com/2010/2010-world-cup-global-conversation

Fragile monolithic Rails code base: managing raw
database and memcache connections to rendering the
site and presenting the public APIs

Throwing machines at the problem: instead of
engineering solutions

Trapped In an optimization corner: trade off readability
and flexibllity for performance

Whale Hunting Expeditions

We organized archeology digs and whale hunting
expeditions to understand large scale failures

We wanted big infra wins: in performance, reliability and
efficiency (reduce machines to run Twitter by 10x)

Failure iIs inevitable in distributed systems: we
wanted to isolate fallures across our infrastructure

Cleaner boundaries with related logic in one place:
desire for a loosely coupled services oriented model at the
systems level

Started to evaluate our front end server
CPU, RAM and network

tier:

Rails machines were being pushed to the limit: CPU
and RAM maxed but not network (200-300 requests/host)

Twitter’s usage was growing: it was going to-

ake a lot

of machines to keep up with the growth cu

e

We started to experiment with the JVM...

Search (Java via Lucene)
http://engineering.twitter.com/2010/10/twitters-new-search-architecture.html

FlockDB: Social Graph (Scala)

https://blog.twitter.com/2010/introducing-flockdb
https://github.com/twitter/flockdb

...and we liked it, enamored by JVM performance!

We weren’t the only ones either: http://www.slideshare.net/pcalcado/from-a-monolithic-ruby-on-rails-app-to-the-jvm

http://engineering.twitter.com/2010/10/twitters-new-search-architecture.html
https://blog.twitter.com/2010/introducing-flockdb
http://www.slideshare.net/pcalcado/from-a-monolithic-ruby-on-rails-app-to-the-jvm

Level of trust with the JVM with previous experience
JVM is a mature and world class platform
Huge mature ecosystem of libraries
Polyglot possibilities (Java, Scala, Clojure, etc)

. ;l DK ! Sca I d

Decomposing the Monolith

Created services based on our core nouns:

Tweet service
User service
Timeline service
DM service
Social Graph service

Routing Presentation

Logic Storage

MySQL
Monoralil

(

Tweet Store

API Tweet Service

~N

- Flock
Web User Service '

- User Store

TFE

(reverse proxy

)
’V Netty

Timeline
Service

dat

Search

Cache

(

SocialGraph
Service

Feature X

Memcached

(

Feature Y DM Service

Redis

it
il

Twitter Stack

- A peak at some of our technology
Finagle, Scalding and Mesos

Decomposing the monolith: each team took slightly
different approaches to concurrency

Different failure semantics across teams: no
consistent back pressure mechanism

Failure domains informed us of the importance of
having a unified client/server library: deal with failure
strategies and load balancing

Hello Finagle! (Scala-based)

http://twitter.github.io/finagle
Used by Twitter, Nest, Soundcloud, Foursquare and more!

000 Finagle -
; | 69 wwitter.github.io/ " nagle/ [Reader 1)

Finagle

Finagle is an extensible RPC system for the JVM, used to construct
high-concurrency servers. Finagle implements uniform client and
server APIs for several protocols, and is designed for high
performance and concurrency. Most of Finagle’s code is protocol
agnostic, simplifying the implementation of new protocols.

Finagle is written in Scala, but provides both Scala and Java
idiomatic APlIs.

Contributing

Finagle is actively maintained by Twitter’s infrastructure team, but we
have many external contributors as well. Before endeavoring on large
changes, please discuss them with the Google groups to receive
feedback and suggestions.

Other resources

http://twitter.github.io/effectivescala/#Concurrency

Takes care of: service discovery, load balancing, retrying,
connection pooling, stats collection, distributed tracing

Future [T]: modular, composable, async, non-blocking
/0O

http://twitter.github.io/effectivescala/#Concurrency

http://twitter.github.io/effectivescala/#Concurrency

Services receive a ton of traffic and generate a ton
of use log and debugging entries.

@Scalding is a open source Scala library that makes
It easy to specify MapReduce jobs with the benefits
of functional programming!

-~
N —

S —

https://github.com/twitter/scalding
https://github.com/twitter/scalding/wiki/Rosetta-Code

https://github.com/twitter/scalding
https://github.com/twitter/scalding/wiki/Rosetta-Code

memcached

Hadoop

Rails

Storm

MySQL

memcached

Hadoop

Rails

Storm

MySQL

The evils of single tenancy and static partitioning
Different jobs... different utilization profiles...
Can we do better?

DATACENTER o STATIC PARTITIONING

@ Spark

33% \ \ 33% 33%

Google was generations ahead with Borg/Omega

“The Datacenter as a Computer”
http://research.google.com/pubs/pub35290.html (2009)

engineers focus on resources needed; mixed workloads possible

Learn from Google and work w/ university research!
htip://wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos

DATACENTER - ;E MESOS
ab =z=== J—
o= = e -

http://research.google.com/pubs/pub35290.html
http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos

Apache Mesos: kernel of the data center
obviates the need for VMs* (aggregation; not virtualization)
isolation via Linux cgroups (CPU, RAM, network, FS)
reshape clusters dynamically based on resources
multiple frameworks; scalability to 10,000s of nodes

batch <= > services Workloads

MPI Hadoop Spark [Storm Kafka elc. Chronos

',
::"g:: MESQOS Kernel
»

LD

distributed resources: CPU, RAM, I/0, FS, rack locality, etc. Cluster

Apache Mesos: kernel of the data center

service batch - streaming
Mesos

For more details, watch: https://www.youtube.com/watch?v=r7gN8QwGv2w

https://www.youtube.com/watch?v=r7qN8QwGv2w

Think non-blocking sockets in the kernel!

framework framework
A Ao ' AR
e [resources are allocated via | a task can use a subset of an offer;
. resource offers
offer task
hostname ||
4 CPUs | a resource offer EEEURSAM
4GBRAM = represents a snapshot of
AR ' AR
T available resources (one mmg frameworks use offers to perform

offer per host) that a its own scheduling

pmasters ; | masters
_— y — ramework can use to - -
g il | run tasks g il |
application application
write(s, buffer, size); 42 of 100 bytes written!

kernel kernel

Data Center Computing

Reduce CapEx/OpEXx via efficient utilization of HW
http://mesos.apache.org

33%
|
i “ reduces CapEx and OpEx!
100%
0% —
75% :

33%
Rk
0% B 25%
33%
Sporiz \ reduces latency!
0%

http://mesos.apache.org

How did it all turn out?
Not bad... not bad at all...

Where did the fail whale go?

Site Success Rate Today :)

100%

World Cup

2006 2010 2014

Performance Today :)

~original architecture " new architecture

statuses/show mentions
500 3000
400 2400
300 1800
: 200 1200
100 600

avg pS0 p95 p999 avg p50 p95 p999

Concluding Thoughts

Lessons Learned

Lesson #1
Embrace open source

best of breed solutions are open these days
learn from your peers code and university research
don’t only consume, give back to enrich ecosystem:
http://twitter.github.io

http://twitter.github.io

Lesson #2
Incremental change always wins

Increase chance of success by making small changes
small changes add up with minimized risk
loosely coupled micro services work

Lesson #3

- “Data center as a computer” is
the future direction of
Infrastructure

Efficient use of hardware saves money
Better programming model (large cluster as single resource)

Thanks for listening!

- (hope you learned something new, see opensource.twitter.com)
remember, feel free to tweet me #eumjapan

@cra / @TwitterOSS
zx@twitter.com

http://opensource.twitter.com
mailto:zx@twitter.com

Resources

httos.//qgithub.com/twitter/finagle
https.//qithub.com/twitter/zipkin
https.//qgithub.com/twitter/scalding

http.//mesos.apache.org

http.//wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos
http://mesosphere.io/2013/09/26/docker-on-mesos/
http.//typesate.com/blog/play-framework-grid-deployment-with-mesos

http.//strata.oreilly.com/2013/09/how-twitter-monitors-millions-or-time-series. htm/

http.//research.google.com/pubs/pub35290.html

http.://nerds.airbnb.com/hadoop-on-mesos/
htto.//www.youtube.com/watch ?v=0ZFMIO98Jk

https://github.com/twitter/finagle
https://github.com/twitter/zipkin
https://github.com/twitter/scalding
http://mesos.apache.org
http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos
http://mesosphere.io/2013/09/26/docker-on-mesos/
http://research.google.com/pubs/pub35290.html
http://nerds.airbnb.com/hadoop-on-mesos/
http://www.youtube.com/watch?v=0ZFMlO98Jk

