
Embedded Linux Conference Europe 2014

Lessons learnt in boot
time reduction

Andrew Murray
Embedded Bits

12

Embedded Linux Conference Europe 2014

1

Understand why and how

Embedded Linux Conference Europe 2014

Why minimal boot times?
• There are lots of good reasons, why are you here?

• Common reasons are:
• To improve user experience in mobile devices

• To respond quickly after power loss

Embedded Linux Conference Europe 2014

How
• Starting point:

• We have a product that achieves required functionality after an unacceptable
delay

• The required functionality is achieved through a number of software tasks
that we’ve defined and so can change

• We can’t change the hardware or the required functionality

• Software is generalised

• We reduce the cold boot time by:
• Ensuring that we perform nothing more than the essential tasks required to

achieve the required functionality whilst making efficient use of the
hardware resources.

• Thus:
• Remove tasks that aren’t required

• Optimise tasks that are required

• Use all the hardware all the time

• Challenge how we provide the functionality

Embedded Linux Conference Europe 2014

2

Know your hardware

Embedded Linux Conference Europe 2014

Know your hardware
• Understand the performance limits of the hardware

• Determine what you can expect to achieve and strive to achieve it

• How quickly can you expect to execute instructions? read data from
storage? send I2C/SPI commands?

• Software will rarely already be optimised for your hardware

• Focus on I/O
• I/O is always a bottleneck

Embedded Linux Conference Europe 2014

• Use /proc/diskstats to measure userspace I/O at the end of
boot

cat /proc/diskstats | grep mmcblk0p6

179 6 mmcblk0p6 1366 871 122870 42690 0 0 0 0 4 4590 42650

122870 sectors read x 512 = 60MB

• Data needed for boot is read from your hardware and takes time

• If you can read at 10MB/S, then your boot will certainly be greater than 6
seconds.
• Ignoring compression for now

• Thus we optimise by maximising I/O rate and minimising data amount

How much data?

Embedded Linux Conference Europe 2014

Optimise I/O
• Read the specs for your hardware

• Calculate any necessary timings

• Ensure the driver is optimal
• Consider supporting additional hardware features

• You will need to do this for both kernel and boot loader

• Optimising I/O comes first – later optimisations will depend on
the performance of I/O.

Embedded Linux Conference Europe 2014

Know your hardware
• Ensure you can use:

• DMA

• Hardware accelerators

• Additional CPU cores

• Caches

• Utilise maximum bus/clock rates
• CPU

• I2C/SPI

Embedded Linux Conference Europe 2014

3

Use compression wisely

Embedded Linux Conference Europe 2014

Use compression wisely
• I/O is often a bottle neck – it’s slow to read data from storage

• Compression is a trade off between CPU and I/O use

• Determine throughput of reading data directly and reading
data with compression to determine optimal solution

• Performance of I/O and algorithms may vary between kernel
and bootloader

• Compression is littered everywhere:
• Compressed kernels (self decompressed, boot loader decompressed)

• Filesystems

• Applications

• Compressibility?

Embedded Linux Conference Europe 2014

The future is quicker 4

Embedded Linux Conference Europe 2014

The future is quicker
• Your product development may not be using the latest versions

of open source components
• This wouldn’t be uncommon

• The platform vendors version of software is often used
• It probably ‘just works’

• It probably demonstrates the key hardware features you will use

• It’s probably old

Embedded Linux Conference Europe 2014

Vendor provided BSPs
Platform Linux version U-Boot version

Mainline v3.17 (Oct ‘14) v2014.07 (Jul ‘14)

Freescale i.MX6 v3.0.35 (Jul ‘11)

v3.10.17 (Jun ‘13)

v2009.08 (Aug ‘09)

v2013.04 (Apr ‘13)

Variscite OMAP4 v3.4.x (May ‘12) v2012.07 (Jul ‘12)

Gumstix Oveo

DM37xx/OMAP35xx

v3.5.x (Jul ‘12) v2013.10 (Oct ‘13)

Gumstix DuoVero

OMAP4430

v3.6.x (Sep ‘12)

Gumstix Verdex Pro

PXA270

v2.6.37 (Jan ‘11)

DVSDK 4 02

DM3730 OMAPL-138

v2.6.37 (Jan ‘11) v2010.12 (Dec ’10)

As of Oct ‘14

Embedded Linux Conference Europe 2014

Take from the future
• Software often gets optimized over time

• Upstream versions may be quicker with fewer bugs

• Upstream versions may be slower with more bugs

• Look to the future and backport before reinventing the wheel

• Example…

Embedded Linux Conference Europe 2014

Embedded Linux Conference Europe 2014

The usual suspects
• String routines get called a lot

• mem[chr|cpy|move|set|zero]

• OMAP4 Linux boot statistics:
• 133,356 times transferring 34MB

• Over time these functions have improved

• Other functions in the kernel
• memcpy_fromio

• See arch/sh/kernel/io.c

• See arch/powerpc/kernel/io.c

Embedded Linux Conference Europe 2014

5

Ignore FS benchmarks

Embedded Linux Conference Europe 2014

Ignore filesystem benchmarks
• Benchmarks are valuable but shouldn’t be used exclusively to

determine choice

• It’s not easy to find a relevant benchmark

• Software evolves over time

• Benchmark may not be relevant to your filesystem version – optimisations
may be missing/present

• Lots of filesystem choice

• Filesystem type

• Block size

• Use of compression

• There isn’t a best – each option balances CPU vs I/O in some way

• So it depends on how fast/slow your CPU and I/O is (or how busy your system
is)

Embedded Linux Conference Europe 2014

Ignore filesystem benchmarks
• Boot time consists of:

• Init time

• Mount time

• Read/write time

• Thus depends on your use case

• Of course your usecase, I/O and possibly CPU performance may
improve over the course of optimisation effecting your
filesystem choice

• Thus measure yourself – you can automate it

Embedded Linux Conference Europe 2014

6

The right approach

Embedded Linux Conference Europe 2014

The right approach
• Measure, measure, measure

• Instrument your software
• Printk timestamps, host timestamps, initcall_debug, printk’s, tracing

• But watch out for unintended side effects

• Identify long delays and tackle them first

• Change one thing at a time and measure the full effect

• Make notes, keep log and be prepared to start over

• Order is important

• Goal:
• 1. Ensure I/O and CPU is 100% utilised during boot

• 2. Ensure the I/O and CPU utilisation is efficient and necessary

• Consider full effect of a change

Embedded Linux Conference Europe 2014

Don’t focus on the kernel
• If you perform any measurement you’ll quickly realise that the

kernel is rarely the worse offender

• Typically the bootloader and userspace take up the majority of
boot time

Embedded Linux Conference Europe 2014

8

Low hanging fruit

Embedded Linux Conference Europe 2014

Low Hanging Fruit
• There are trivial changes that generally always improve the

boot time of the majority of devices
• These are applied to the majority of boot time reduction projects

• No boot time presentation would be complete without these

Embedded Linux Conference Europe 2014

U-Boot delay
• Eliminate boot delay with CONFIG_BOOTDELAY

• Allow development with CONFIG_ZERO_BOOTDELAY_CHECK

• Use CONFIG_AUTOBOOT_KEYED to prevent accidents

Embedded Linux Conference Europe 2014

Precalculated LPJ
• Use the ‘lpj’ argument in the kernel command line to prevent

calibrating a delay loop on each boot

Calibrating delay loop... 1590.23 BogoMIPS (lpj=6213632)

Embedded Linux Conference Europe 2014

Disable console output
• Add ‘quiet’ to the kernel command line to supress kernel

output during boot

• Supress U-Boot output with:
• CONFIG_SILENT_CONSOLE

• CONFIG_SILENT_CONSOLE_UPDATE_ON_RELOC

• CONFIG_SILENT_U_BOOT_ONLY

Embedded Linux Conference Europe 2014

U-Boot scripts
#define CONFIG_BOOTCOMMAND \

 "if mmc rescan ${mmcdev}; then " \

 "if run loadbootenv; then " \

 "echo Loaded environment from ${bootenv};" \

 "run importbootenv;" \

 "if test -n $uenvcmd; then " \

 "echo Running uenvcmd ...;" \

 "run uenvcmd;" \

 "fi;" \

 "elif run loadbootscript; then " \

 "echo Loaded script from ${bootscr};" \

 "run bootscript; " \

 "else " \

 "if run loaduimage; then " \

 "run mmcboot; " \

 "fi; " \

 "fi; " \

 "fi; " \

 "if usb start; then " \

 "set autoload no; "\

 "bootp; "\

 "pxe get;" \

 "pxe boot;" \

 "fi"

#endif

Embedded Linux Conference Europe 2014

More fruit
• Reduce U-Boot environment size

• Ensure U-Boot reads the right amount of data and puts it in the
right place
• ‘nboot’ can help

• Image verification

• Optimise memset/memcpy

• Reduce size of binaries
• Kernel (KALLSYMS, IKCONFIG), strip binaries, mklibs, etc

• Device node creation

• Init.d style boot

• Sleeps

Embedded Linux Conference Europe 2014

9

Make it stick

Embedded Linux Conference Europe 2014

Make it stick
• Boot time is likely to increase through subsequent

development
• And so boot time reduction can be a repeating exercise

• Reasons boot time doesn't stick:
• Development of new features doesn’t consider boot time

• Boot time enhancements can be inflexible, inconvenient and limiting

• Inconvenient optimisations have a habit of disappearing
• No one ever removes a ‘no side effect’ optimisation such as improved

NAND timings

• Maintaining a minimal boot time is difficult

Embedded Linux Conference Europe 2014

Bad solutions
• Delay: Ethernet initialisation in U-Boot

• Bad solution: Ethernet not used in U-Boot so remove support

• Impact: No-one can TFTP – annoying for development

• Better solution:
• Defer initialisation

• Add a custom U-Boot command that re-enables Ethernet

• Developers can add this command to their ‘bootcmd’

• If U-Boot size is an issue – it can be conditionally removed for a release
build

• Run time options such as this that default to quick boot are great

• Compile/Config time options may result in git commit fights

• Don’t replace - complement

Embedded Linux Conference Europe 2014

Bad solutions
• Delay: Udev

• Bad solution: Remove it and use hard coded device nodes

• Impact: It works great until the moment the kernel changes
then everyone gets odd errors, eventually udev shows up again

• Better solution:
• Use devtmpfs

• Update drivers to use hard coded device number (if you must)

Embedded Linux Conference Europe 2014

Make it stick
• Make boot time enhancements less annoying

• It’s easy to use a sledge hammer

• Find good solutions that preserve or replace ‘unneeded’ functionality

• Sometimes unavoidable for tiny boot times

• Aim for run time switches to enable them

• Maybe use a hardware switch

• Automate boot time measurement
• Use automation to build, deploy, boot and measure your boot time

• Tie this in with git hooks

• Find out at the earliest moment when your boot time increases

• Helps share ownership of boot time reduction

Embedded Linux Conference Europe 2014

11

Look in the right places

Embedded Linux Conference Europe 2014

Look in the right places
• You’ll get to a point where…

• You’ve read the internet and implemented its suggestions

• You’ve implemented the low hanging fruit

• You’ve think everything left is needed and it does what it needs to do

• Where next?

Embedded Linux Conference Europe 2014

Look in the right places
• You’ve probably been looking at big delays

• Don’t forget the small delays that happen all the time

• Harder to find – you need to consider both time and frequency

• Profiling tools helps here

• This is probably where the hard work begins

• Google ‘instrumentation/tracing’ instead of ‘reduce boot time’

• Don’t forget to group related delays to truly see impact
• You need to do that fsck because you have chosen a file system that

needs it

• Ask yourself if the tasks are really needed?
• Do they directly contribute to achieving the boot time functionality?

• Bootloaders, start up scripts, dynamic device nodes – nice but not essential

Embedded Linux Conference Europe 2014

GStreamer example
• Gstreamer heavily uses plugins (shared libraries)

• When a Gstreamer application starts (gst_init) it will scan
GST_PLUGIN_PATH for plugins and populate a registry used to
find plugins
• This takes time

• This isn’t needed on every boot

• Example of a task that isn’t needed

• Used GST_REGISTRY_UPDATE to prevent scan and used a pre-
provided registry

• Reduced data transfer during boot by 20MB saved 4 seconds

• Found by littering printf’s through the application

Embedded Linux Conference Europe 2014

Look in the right places
• Look at:

• Code you’ve written

• Code your team has written

• Code the board provider has written

• Code the silicon vendor has written

• Everything else

Embedded Linux Conference Europe 2014

10

Find good tools

Embedded Linux Conference Europe 2014

Tools can help
• Tools can save you time and provide clarity

• There are a lot of tools available

• Sometimes they can overwhelm you with information

• Use them towards end of project

• You can do a lot with printk/printf and timestamps

• Perf, oprofile, strace are helpful too
• Lots of presentations on these topics

• “Linux Performance Tools” – Brendan Gregg, Netflix

• Bootchart can help visualise userspace performance

Embedded Linux Conference Europe 2014

Bootchart

Embedded Linux Conference Europe 2014

11

Create an illusion

Embedded Linux Conference Europe 2014

Create an illusion
• Why do you want a minimal boot time anyway?

• Can you achieve it without a minimal boot time?

• Small boot time can be difficult to achieve
• So why not create an illusion of a small boot time instead

• ‘Smoke and Mirrors’ have a place

• Defer functionality that isn’t needed straight away

Embedded Linux Conference Europe 2014

12

Expect disruption

Embedded Linux Conference Europe 2014

Expect disruption
• Minimal boot times often result in a compromise

• This effects everyone that is developing the product

• Changes you wish to make may conflict with other parts of the
product development

• Your changes may have knock on effects

• Be prepared to make and justify your case
• How important is a minimal boot time?

• You may find out that minimal boot time isn’t everything after all

Embedded Linux Conference Europe 2014

Thank you

Questions?

Andrew Murray
Embedded Bits <amurray@embedded-bits.co.uk>

