
XenServer Engineering Performance Team
Dr Felipe Franciosi

Low Latency Virtualisation Challenges

Xen and XenServer
Storage Performance

e-mail: felipe.franciosi@citrix.com
freenode: felipef #xen-api
twitter: @franciozzy

© 2013 Citrix

Agenda
• Where do Xen and XenServer stand?

๏ When is the virtualisation overhead most noticeable?

• Current implementation:
๏ blkfront, blkback, blktap2+tapdisk, blktap3, qemu-qdisk

• Measurements over different back ends
๏ Throughput and latency analysis
๏ Latency breakdown: where are we losing time when virtualising?

• Proposals for improving

2

When is the virtualisation overhead
noticeable?

Where do
Xen and XenServer Stand?

© 2013 Citrix

Where do Xen and XenServer stand?
• What kind of throughput can I get from dom0 to my device?

๏ Using 1 MiB reads, this host reports 118 MB/s from dom0

4

© 2013 Citrix

Where do Xen and XenServer stand?
• What kind of throughput can I get from domU to my device?

๏ Using 1 MiB reads, this host reports 117 MB/s from a VM

5

IMPERCEPTIBLE
virtualisation overhead

© 2013 Citrix | Confidential - Do Not Distribute

Where do Xen and XenServer stand?
• That’s not always the case...

๏ Same test on different hardware (from dom0)

6

my disks can do
700 MB/s !!!!

© 2013 Citrix | Confidential - Do Not Distribute

Where do Xen and XenServer stand?
• That’s not always the case...

๏ Same test on different hardware (from domU)

7

VISIBLE
virtualisation overhead

why is my VM only
doing 300 MB/s ???

How we virtualise storage with Xen
Current Implementation

© 2013 Citrix

Current Implementation (bare metal)
• How does that compare to storage performance again?

๏ There are different ways a user application can do storage I/O
• We will use simple read() and write() libc wrappers as examples

9

user
process

1. char buf[4096];

2. int fd = open(“/dev/sda”,
 O_RDONLY | O_DIRECT);

3. read(fd, buf, 4096);

4. buf now has the data!

buf

fd

kernel space
user space

vfs_read() f_op->read()**

BD
device
driver

block
layer

libc

sys_read(fd, buf, 4096)

HW Interrupt
on completion

© 2013 Citrix

Current Implementation (Xen)
• The “Upstream Xen” use case

๏ The virtual device in the guest is implemented by blkfront
๏ Blkfront connects to blkback, which handles the I/O in dom0

10

device
driverVDI

kernel space
user space

user
process

buf

fd

block
layer

dom0 domU

syscall / etc()

blkfrontblkback

xen’s blkif
protocol

block
layer

device
driverBD

kernel space
user space

libc

© 2013 Citrix

Current Implementation (Xen)
• The XenServer 6.2.0 use case

๏ XenServer provides thin provisioning, snapshot, clones, etc. hello VHD
๏ This is easily implemented in user space. hello TAPDISK

11

VDI

kernel space
user space

user
process

buf

fd

block
layer

dom0 domU

syscall / etc()

blkback

xen’s blkif
protocol

block
layer

device
driverBD

kernel space
user space

data stored
in VHD

tapdisk2

blktap2tap
block
layer

libaio

aio syscalls

libc

blkfront

© 2013 Citrix

Current Implementation (Xen)
• The blktap3 and qemu-qdisk use case

๏ Have the entire back end in user space

12

VDI

kernel space
user space

user
process

buf

fd

block
layer

dom0 domU

syscall / etc()

device
driverBD

kernel space
user space

data stored
in VHD

tapdisk2

block
layer

libaio

aio syscalls

libc

tapdisk3 / qemu-qdisk
xen’s blkif
protocol

blkfront

gntdev evtchn
dev

Throughput and latency analysis

Measurements Over
Different Back Ends

© 2013 Citrix

Measurement Over Different Back Ends
• Same host, different RAID0 logical volumes on a PERC H700

๏ All have 64 KiB stripes, adaptive read-ahead and write-back cache enabled

14

© 2013 Citrix15

• dom0 had:
• 4 vCPUs pinned
• 4 GB of RAM

• It becomes visible that
certain back ends cope
much better with larger
block sizes.

• This controller
supports up to 128 KiB
per request.

• Above that, the Linux
block layer splits the
requests.

© 2013 Citrix16

• Seagate ST (SAS)

• blkback is slower, but it
catches up with big
enough requests.

© 2013 Citrix17

• Seagate ST (SAS)

• User space back ends
are so slow they never
catch up, even with
bigger requests.

• This is not always true:
if the disks were
slower, they would
catch up.

© 2013 Citrix18

• Intel DC S3700 (SSD)

• When the disks are
really fast, none of the
technologies catch up.

© 2013 Citrix

Measurement Over Different Back Ends
• There is another way to look at the data:

19

Throughput (data/time)

1
= Latency (time/data)

© 2013 Citrix20

• Intel DC S3700 (SSD)

• The question now is:
where is time being
spent?

• Compare time spent:
• dom0
• blkback
• qdisk

© 2013 Citrix

Measurement Over Different Back Ends
• Inserted trace points using RDTSC

๏ TSC is consistent across cores and domains

21

device
driverVDI

kernel space
user space

user
process

buf

fd

block
layer

dom0 domU

syscall / etc()

blkfrontblkbackblock
layer

device
driverBD

kernel space
user space

libc

1

2

3

45

6

1. Just before issuing read()
2. On SyS_read()
3. On blkfront’s do_blkif_request()
4. Just before notify_remote_via_irq()
5. On blkback’s xen_blkif_be_int()
6. On blkback’s xen_blkif_schedule()
7. Just before blk_finish_plug()

78

8. On end_block_io_op()
9. Just before notify_remove_via_irq()
10. On blkif_interrupt()
11. Just before __blk_end_request_all()
12. Just after returning from read()

9
10

11

12

© 2013 Citrix

Measurement Over Different Back Ends
• Initial tests showed there is a “warm up” time
• Simply inserting printk()s affect the hot path
• Used a trace buffer instead

๏ In the kernel, trace_printk()
๏ In user space, hacked up buffer and a signal handler to dump its contents

• Run 100 read requests
๏ One immediately after the other (requests were sequential)
๏ Used IO Depth = 1 (only one in flight request at a time)

• Sorted the times, removed the 10 (10%) fastest and slowest runs
• Repeated the experiment 10 times and averaged the results

22

© 2013 Citrix23

Time spent on device

Actual overhead of
mapping and unmapping
and transferring data back
to user space at the end

Measurements on 3.11.0
without Persistent Grants

© 2013 Citrix24

Time spent on device

Time spent copying data
out of persistently granted
memory

Measurements on 3.11.0
with Persistent Grants

© 2013 Citrix

Measurement Over Different Back Ends
• The penalty of copying can be worth taking depending on other factors:

๏ Number of dom0 vCPUs (TLB flushes)
๏ Number of concurrent VMs performing IO (contention on grant tables)

• Ideally, blkfront should support both data paths

• Administrators can profile their workloads and decide what to provide

25

What else can we do to minimise the overhead?
Proposals for Improving

© 2013 Citrix

New Ideas
• How can we reduce the processing required to virtualise I/O ?

27

© 2013 Citrix

New Ideas
• Persistent Grants

๏ Issue: grant mapping (and unmapping) is expensive
๏ Concept: back end keeps grants, front end copies I/O data to those pages
๏ Status: currently implemented in 3.11.0 and already supported in qemu-qdisk

• Indirect I/O
๏ Issue: blkif protocol limit requests to 11 segs of 4 KiB per I/O ring
๏ Concept: use segments as indirect mapping of other segments
๏ Status: currently implemented in 3.11.0

28

© 2013 Citrix

New Ideas
• Avoid TLB flushes altogether (Malcolm Crossley)

๏ Issue:
• When unmapping, we need to flush the TLB on all cores
• But in the storage data path, the back end doesn’t really access the data

๏ Concept: check whether granted pages have been accessed
๏ Status: early prototypes already developed

• Only grant map pages on the fault handler (David Vrabel)
๏ Issue:

• Mapping/unmapping is expensive
• But in the storage data path, the back end doesn’t really access the data

๏ Concept: Have a fault handler for the mapping, triggered only when needed
๏ Status: idea yet being conceived

29

© 2013 Citrix

New Ideas
• Split Rings

๏ Issue:
• blkif protocol supports 32 slots per ring for requests or responses
• this limits the total amount of outstanding requests (unless multi-page rings are used)
• this makes inefficient use of CPU caching (both domains writing to the same page)

๏ Concept: use one ring for requests and another for responses
๏ Status: early prototypes already developed

• Multi-queue Approach
๏ Issue: Linux’s block layer does not scale well across NUMA nodes
๏ Concept: allow device drivers to register a request queue per core
๏ Status: scheduled for Kernel 3.12

30

e-mail: felipe.franciosi@citrix.com
freenode: felipef #xen-api
twitter: @franciozzy

