
Comparison of Open Source and
Commercial Static Analysis
Solutions

Zack Samocha, Senior Director of Products
Coverity

Agenda

• Coverity Scan

• Use case of projects using Scan (Linux, Python, ANTLR)

• Examples of defects

• Java Case Study: Analysis of Jenkins project

• C/C++ Case Study: Analysis of RTOS project

• How to join Coverity Scan

Coverity Scan
Free cloud-based service for the open source community

Coverity founders first

published work

reported over 500

defects in the Linux

kernel

2000 2006 2013

Over 600 projects and 300M lines of code

Over 45,000 defects fixed by the community

Coverity Scan began

Proven developer adoption

Coverity Scan how it works

4

• CPU for Analysis of
whole application

• Persistency: Triage,
False positive

• Automation: build
upload, email

• UI for remediation
• User Management

1. Register project
2. Download Coverity

“Build” and upload
results to
Scan.Coverity.Com

3. View/Triage defects

Coverity and Linux

Coverity founders’
first published work
reported over 500

defects in the Linux
kernel

Lines of code:
5.7 million

Defects Identified:
985

Buffer Overflow Defects:
103

False Positive Rate:
20%

2000 2004 2013

Lines of code:
7.6 million

Defects Identified:
4,490

Buffer Overflow Defects:
527

False Positive Rate:
9.7%

Over 18,000 defects identified

Nearly 10,000 defects fixed

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013 5

Linux 3.8 Kernel – Fixed Defects 2013

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013 6

Category # defects

API usage errors 11

Code maintainability issues 51

Concurrent data access violations 3

Control flow issues 186

Error handling issues 157

Incorrect expression 72

Insecure data handling 41

Integer handling issues 795

Memory - corruptions 723

Memory - illegal accesses 140

Null pointer dereferences 235

Performance inefficiencies 1

Program hangs 3

Resource leaks 94

Security best practices violations 21

Uninitialized variables 89

Various 1

Total 2623

• 7.8M LOC

• 0.66 Defect

 density

Python Interpreter (C/C++) –
Fixed Defects 2013

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013 7

Category #defects

API usage errors 1

Code maintainability issues 1

Control flow issues 12

Error handling issues 22

Insecure data handling 2

Integer handling issues 37

Memory - corruptions 17

Memory - illegal accesses 7

Null pointer dereferences 23

Resource leaks 25

Security best practices violations 6

Uninitialized variables 3

Total 156

• 400K LOC

• Defect density : Zero!

ANTLR (Java Code) - Fixed Defects 2013

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013 8

Category Total

Coverity: Exceptional resource leaks 4

FindBugs: Bad practice 3

FindBugs: Dodgy code 6

Coverity: Incorrect expression 1

Coverity: Null pointer dereferences 5

Coverity: Resource leaks 1

Total 20

• 40K LOC

alloc_fn: Calling allocation function
"kzalloc". bss_cfg is assigned

Linux- Defect Example Resource Leak

9

Linux- Defect Example Resource Leak

10

bss_cfg is not freed

Linux- Defect Example Resource Leak

11

bss_cfg out of scope and leaks

The Fix:

http://marc.info/?l=linux-

wireless&m=134135643727424&w=2

http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2

Python Defect - Memory Corruption

12

Memory was allocated for variable "buffer".
line 10123, memory was de-allocated for variable "buffer".

Python Defect - Memory Corruption

13

line 10161, memory was again deallocated for
variable "buffer", but after NULL check.

Python Defect - Memory Corruption

14

The fix : set buffer to Null after de-allocation

ANTLR Defect – Copy Paste Error

15

This particular defect occurs when a section of code is
copied and pasted and the programmer, who intended to
rename an identifier, forgot to change one instance

ANTLR Defect – Null Dereferences

16

“g” is compared against null on line 115, indicating that the
developer expects that it might be null. If “g” is actually null, it will
be passed to the getStateString() method on line 116, which will
throw a NullPointerException on line 133

Numerous Options Exist

Considerations

• Does it find critical defects?

• What is the false positive
rate?

• Is it actionable?

• Is it accurate?

• Is it integrated to my
workflow?

• How do I manage
persistency

Jenkins Analysis

• Analyzed Jenkins version 1.496 core code using up-to-date
Coverity and FindBugs (as of Dec 2012)

18 Copyright 2013, Coverity, Inc.

Different Things are Found

19

196

FindBugs
627 28

Only 28 issues shared between Coverity and FindBugs

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013

Comparison by Defect Type

20

Type Coverity FindBugs Shared Defects

Unhandled exceptions

(incl. NULL deref)
79 7 5

Resource leaks 86 12 13

Concurrency problems 22 10 9

Critical Defect

Subtotal
188 29 27

Coding Standards, Best

Practices, Other
9 598 1

Total Bugs 196 627 28

Coverity

79

86

22

187

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013

Freeradius Analysis

• Freeradius version: 2.1.12 (released 30th Sep, 2011)

• Clang Analyzer version: checker-275 (23rd May, 2013)

• Coverity version: 6.6.1 (July, 2013)

21 Copyright 2013, Coverity, Inc.

Different Things are Found

22

121

Clang

97 3

Only 3 issues shared between Coverity and Clang

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013

Comparison by Defect Type

23

Type Coverity Clang Shared Defects

Memory 79 5 0

Resource leaks 86 3 0

Control Flow, Concurrent

access, Other
22 30 1

High + Medium Defects 188 38 1

Coding Standards, Best

Practices, Other
9 59 2

Total Bugs 121 97 3

Coverity

11

9

83

103

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013

Freeradius: 2.2.1 (released 17th Sep, 2013)

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013

Security Vulnerability: “We scanned the
rlm_eap_tls.c file with the LLVM checker-267,
taken from http://clang-analyzer.llvm.org/. It did
not find this issue. However, a Coverity scan did
discover it.”

http://freeradius.org/security.html

http://freeradius.org/security.html

Two years later …Freeradius Analysis

• Freeradius version: freeradius 2.2 (released 2013)

• Clang Analyzer version: checker-275 (23rd May, 2013)

• Coverity version: 6.6.1 (July, 2013)

25 Copyright 2013, Coverity, Inc.

Impact Category

Coverity

found in

2.1.12

Fixed in

2.2.1 Shared

Clang

found in

2.1.12

Fixed in

2.2.1 Clang Category

High Memory - corruptions 7 3

High Memory - illegal accesses 4 3 5 3 Use-after-free

High Resource leaks 9 8 3 Memory leak

High Uninitialized variables 5 2 2 2 Assigned value is garbage

Medium API usage errors 6

Medium

Concurrent data access

violations 1

Medium Control flow issues 18 5

Medium Error handling issues 19

Medium Incorrect expression 14 7 9 3

Dead incremeant/

Dead initialization/Unix API

Medium Insecure data handling 5 5

Medium Integer handling issues 1

Medium Null pointer dereferences 13 6 1 19 1 Dereference of null pointer

Medium Program hangs 1

Low Code maintainability issues 4 2 59 1 Dead Assignment

Low Parse warnings 1

Low Security best practices violations 13 3

Total 121 42 3 97 10

10 0f Clang defects
were fixed

42 0f Coverity
defects were fixed

Two years later ….Fixed in FREERADIUS 2.2.

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013

FreeRADIUS Quality practices
From Alan Dekok

• Use APIs which make it harder for issues to arise (explicit lengths, etc.)

• On 3.0 branch, build with *no* C compiler warnings

• Use autobuilds (https://travis-ci.org/FreeRADIUS/freeradius-server/) builds with

clang && gcc, and builds debian packages

• Coverity:

• New Coverity builds every day, Coverity are emailed to the core team. Many can be fixed

directly from the summary in the email

• This practice ensures basic code sanity. What it *can't* do is ensure logical correctness. We've

had a few bugs slip in where the code passes all checks, but is logically incorrect. i.e. it doesn't

implement part of a protocol correctly.

• Finding those issues automatically is harder. Doing a protocol test suite for a complex daemon

is very difficult. With the 3.0 branch, we're now running more unit tests, for basic

functionality. That helps, but more tests are needed.

• For us, Coverity is an indispensable part of our daily development routine. It's helped to make

FreeRADIUS better software. And it's helped to make us better programmers.

https://travis-ci.org/FreeRADIUS/freeradius-server/
https://travis-ci.org/FreeRADIUS/freeradius-server/
https://travis-ci.org/FreeRADIUS/freeradius-server/
https://travis-ci.org/FreeRADIUS/freeradius-server/
https://travis-ci.org/FreeRADIUS/freeradius-server/

The bar has been raised on what is considered good quality software

.69 defect density vs. 1.0

How Does Your Code Compare?

Defect Density by Project Size: Open Source vs. Proprietary

Lines of code Open Source Proprietary

<100k .4 .51

100k-499k .6 .66

500k-1m .44 .98

>1M .75 .66

Average .69 .68

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2013 28

Sign Up Today

SCAN.Coverity.COM – Free for the Open
Source Community

29

Q&A

Confidential: For Coverity and Partner use only. Copyright Coverity, Inc., 2011 30

