Comparison of Open Source and
Commercial Static Analysis
Solutions

Zack Samocha, Senior Director of Products
Coverity

Agenda

Coverity Scan

Use case of projects using Scan (Linux, Python, ANTLR)

Examples of defects

Java Case Study: Analysis of Jenkins project
C/C++ Case Study: Analysis of RTOS project
How to join Coverity Scan

{) coverity’

Coverity Scan

Free cloud-based service for the open source community

Coverity founders first
published work
reported over 500
defects in the Linux
kernel

2000

Coverity Scan began

2006
Over 600 projects and 300M lines of code
Over 45,000 defects fixed by the community

Proven developer adoption

PostgreSQL

o p pgthon"

Amanda

@NTLR Cassandra

2013

@) coverity*

Coverity Scan how it works

SAMBA g Jenkins Sl

PgSOLa @

A puthon COVBI’ity Scan | static Analysis
h (o]a]

CPU for Analysis of
whole application

« Persistency: Triage,
False positive

e Automation: build
upload, email

« Ul for remediation

User Management

DLD eOffice

ove o T fman

(M cass

1. Register project

2. Download Coverity
“Build” and upload
results to
Scan.Coverity.Com

3. View/Triage defects

Coverity and Linux

Lines of code: Lines of code:
Coverity founders’ 5.7 million 7.6 million
first published work o .
reported over 500 Defects Identified: Defects Identified:
defects in the Linux 985 4,490
kernel Buffer Overflow Defects: Buffer Overflow Defects:
103 527
False Positive Rate: False Positive Rate:
20% 9.7%
2000 2004 2013

Over 18,000 defects identified
Nearly 10,000 defects fixed

@) coverity*

Linux 3.8 Kernel — Fixed Defects 2013

. Category # defects
é API usage errors 11
\ Code maintainability issues 51
¢ 7. SM LOC Concurrent data access violations 3
Control flow issues 186
* 0.66 Defect [Error handling issues 157
. Incorrect expression 72
denSIty Insecure data handling 41
Integer handling issues 705
Memory - corruptions 723
Memory - illegal accesses 140
Null pointer dereferences 235
Performance inefficiencies 1
Program hangs 3
Resource leaks 94
Security best practices violations 21
Uninitialized variables 89
Various 1
Total 2623

Python Interpreter (C/C++) —
Fixed Defects 2013

+ 400K LOC @ python

* Defect density : Zero!

Category #defects
API usage errors

Code maintainability issues

Control flow issues 12
Error handling issues 22
Insecure data handling 2
Integer handling issues 37
Memory - corruptions 17
Memory - illegal accesses 7
Null pointer dereferences 23
Resource leaks 25
Security best practices violations 6
Uninitialized variables 3
Total 156,

ANTLR (Java Code) - Fixed Defects 2013
(ONTLR

* 40K LOC

Category Total

Coverity: Exceptional resource leaks 4
FindBugs: Bad practice 3
FindBugs: Dodgy code 6
Coverity: Incorrect expression 1
Coverity: Null pointer dereferences 5
Coverity: Resource leaks 1
Total 20

{) coverity’

Linux- Defect Example Resource Leak

s Q)

934

4 CID 709078 (#1 of 1): Resource leak (RESOURCE_LEAK)

alloc_fn: Calling allocation function “kzalloc™.

93

936
937
938

8939
S48

941
942

943
944
945

var_assign: Assigning: "bss_cfg”™ = storage returned from “kzalloc(13200, 20807
hss_cfg = kralloc(sizeofi(struct mwifiex_uap_bss_param), GFP_KERNEL);
At conditional (1) "!bss_cfg” taking the false branch.

if {lbss_c¥g)
return -ENOMEM;

noescape; Variable "bss_cfg” is not freed or pointed-to in function “mwifiex_set_sys_config_invalid_data”.

mwifiex_set_sys_config_invalid_datal(bss_cfg);

At conditional (2). "params-=beacon_interval® taking the true branch.

if {(params-:beacon_interval)
hss_cfg-rbeacon_period = params-:beacon_interval;

At conditional (3) "params-=dtim_period™ taking the true branch.
if (params->dtim_period)
bss_cfg-rdtim_period = params->dtim_pericd;

@) coverity

Linux- Defect Example Resource Leak

10

934

935

936
37
38

939
S4a

941
942

943
944
945

4 CID 709078 (#1 of 1): Resource leak (RESOURCE_LEAK)
alloc_fn: Calling allocation function “kzalloc™.

var_assign: Assianing: "bss_cfg” = storage returned from “kzalloc(1320UL, 208LU).
bhss_cfg = kralloc(sizeof(struct mwifiex_uap_bss_param), GFP_KERMEL);
At conditional (1) "lbss_cfg™ taking the false branch.

if (!bss_cfg)
return -ENOMEM;

noescape; Variable "bss_cfg” is not freed or pointed-to in function "mwifiex_set_sys_config_invalid_data”.

mwifiex_set_sys_config_invalid_dataibss_cfg);

At conditional (2); "params-=beacon_interval™ taking the true branch.
if (params->*beacon_interval)
bss_cfg->beacon_period = params->rbeacon_interval;
At conditional (3): "params-=dtim_period™ taking the true branch.
if (params->dtim_period)
bss_cfg->dtim_periocd = params->dtim_period;

{) cover

ity

Linux- Defect Example Resource Leak

bss_ cfg out of scope and leaks

a51 switch (params-xhidden_ssid) {

952 case NL88211 HIDDEM_SSID _MOT_IN_USE:
a53 bhss_cfg-rbcast_ssid_ctl = 1;
954 break;

955 case MNLe@21l_HIDDEN_SSID_ZEROC_LEN:
956 bss_cfg-rbcast_ssid_ctl = &;

break;
At conditional (6): switch case value "NL30211_HIDDEMN_SSID_FERO_COMTEMTS™ taking the true branch.
case MNLEB8211_HIDDEN_SSID_ZERO CONTENTS:
A* Firmwore doesn't support this type of hidden 55I0 */
default:
leaked_storage: Variable "bss_cfg™ going out of scope leaks the storage it points to.
return -EINVAL;

*. CID 709078: Resource leak (RESOURCE LEAK)
— drivers/net/wireless/mwifiex/cfg80211l.c, line: 935
Assigning: "bss_cfg" = storage returned from "kzalloc(132UL, 208U)"
— but was not free
drivers/net/wireless/mwifiex/cfgB80211.c:935

VVVVY

Signed-off-by: Bing Zhao <bzhaocfmarvell.com>
drivers/net/wireless/mwifiex/cfg80211.c | 1+
1 files changed, 1 insertions(+), 0 deletions(-)

diff —--git a/drivers/net/wireless/mwifiex/cfgB8021l.c b/drivers/net/wireless/mwifiex/cfgB80211.c
index 3875bla..6c57e83 100644

——— a/drivers/net/wireless/mwifiex/cfg8021l.c

+++ b/drivers/net/wireless/mwifiex/cfg80211l.c

@@ —-1039,6 +1039,7 @@ static int mwifiex cfg80211 start_ ap(struct wiphy *wiphy,

. case NL80211_ HIDDEN_ SSID ZERO_CONTENTS:
jﬂkle I:l)(: /* firmware doesn't support this type of hidden SSID */
- default:
N 1 2N= 1 _ + kfree (bss_cfqg):
http://marc.info/?1=linux ——> kiree(bss_cfo):

wireless&m=134135643727424&w=2 !

http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2
http://marc.info/?l=linux-wireless&m=134135643727424&w=2

Python Defect - Memory Corruption

Show v Modules/posixmodule.c
This is a historical version of the file displaying the issue before it was in the Fixed state. To see the latest version, ,

10116 - len‘th = listxattr(name, buffer, buffer_size);
18117 else

10118 length = llistxattr(name, buffer, buffer_size);

Py_END_ALLOW_THREADS

12. Condition "length < OL", taking true branch
if (length < @) {
13. Condition **__ermo_location() == 34", taking true branch
if (errno == ERANGE) {
14, freed_arg: "free(void *)" frees "buffer”.
10123 PyMem_FREE(buffer);
15. Continuing loop

. @ python

10125 }
10126 path_error(&path);

B @) coverity

Python Defect - Memory Corruption

13

18153
18154
18155
18156
18157
18158
1e159

18168

18161
18162
lel63
18164

start = trace + 1;

}
break;

}

exit:
path_cleanup({&path);
18, Condition "buffer”, taking true branch
if (buffer)

4 CID 1021198 (#1 of 1): Double free (USE_AFTER_FREE)
20. double_free: Calling “free(void *)" frees pointer "buffer™ which has already been freed.

PyMem_FREE(buffer);

T @ python’

— B A cse e e ———— = &

@) coverity

Python Defect - Memory Corruption

ow v /Modules/posixmodule.c

1eNgTn = L1STXATTr(name, LLigiiy, ourrer_size);
else
10825 length = llistxattr(name, [INZIIN, buffer_size);
y_END_ALLOW_THREADS ;

if (length < 2) {
if {errnn mm ERAHGE} {

18268 path_error(&path); a t h
19269 break; J:l‘ p U On
1827@ }

187373 racnul® = Dwul det Mawlfoh -

14 @) coverity

ANTLR Defect — Copy Paste Error

This particular defect occurs when a section of code is
copied and pasted and the programmer, who intended to
rename an identifier, forgot to change one instance

if (returns!=null) {
r.retvals = ScopeParser.parseTypedArglist(returns, returns.getText()
r.retvals.type = AttributeDict.DictType.RET;
original: "r.retvals.ast = returns” looks like the orniginal copy

r.retvals.ast = returns;

if (locals!=null) {
r.locals = ScopeParser.parseTypedArglist(locals, locals.getText(), g
3 r.locals.type = AttributeDict.DictType.LOCAL;
‘ ¢ CID 1072510 (#1 of 1): Copy-paste error (COPY_PASTE_ERROR)
‘ copy_paste_error: “returns” in “rlocals.ast = returns” looks like a copy-paste error. Should it say “locals” instead?|

r.locals.ast = returns;

(ONTLR

{) coverity’

ANTLR Defect — Null Dereferences

0. CONocROoN TiNSIance0d ofg ansr va runime ainAIomiransmon-, 13Xn4J wue orancn

112 else if (t instanceof AtosTransition) {
113 AtemTransition a = (AtomTransition)t;
114 String label = a.toString();

11. Congition "g = nuil”, 1aking false branch
12. var_compare_op: Comparing “g" to null implies that "g” might be null
115 if (g!snull) label = g.getTokenDisplayNare(s.label);
€ CID 1072514 (#1 of 2). Dereference aftar null check (FORWARD_NULL)
13, var_derel_modek “org.antir.vd. automata ATNPrinter. ge1StateString (g antie. vd runtime.atn ATNState)" dereferences null “tis.g" [hide details]
buf.append(”-").appenc(label).append(”->*) .appena(!etsutesuin!(t .ur,ret)) Lappendi

String getStateString(ATNState =) {
int n = s.stateNusber;
Steing stateStr = "s5"en;
1. Condition “s instanceof org.antir vd runbime atn StarBlockStartState”, taking false branch
if (5 instanceof StarBlockStartState) stateStr « “Star8lockStart_"en;
2 Condition "s instanceof org.antir v4 runtime. atn PlusBfockStastState”, taking faise deanch
else if (5 instanceof PlusBlockStartState) stateStr = "PlusBlockStart_“en;
3. Condition “s instanceof org.antlr v4 runtime. atn BlockStaniState®, 1aking false branch
else if (2 instanceof BlockStartState) stateStr = “BlockStart_“en;
4 Condition “s Instanceof org.antlr vd runtime atn BlockEndState®, taking false branch
else if (2 instanceof BlockEndState) stateStr = “BlockEnd_“en;

5. Condibion "s instanceol ocg.antlr v4 runtime atn RuteStanStale™, taking true branch
6. method_calk: Calling method on °g".

133 else if (s instanccof RuleStartState) stoteStr =« "RuleStart_"eg.getRule(s.rulelndex).name+”_“en;
134 else if (5 instanceof RuleStopState) stateStr = “RuleStop_Teg.getRule(s.rulelndex).names”_"en;
else if (= instanceof PlusLoopbackState) stateStr = “PlusloopBack_“+n;
else if (5 instancecof StarloopbackState) stateStr = “StarloopBack_"+n;
else if (s instanceof StarlLoopEntryState) stataStr = “StaclLoopEntry_"+n;

129 5 return stateSte;)Veritya

148 }

Numerous Options Exist

4) 4)
. Considerations
@) coverity

e Does it find critical defects?

Th

FindBugs « What is the false positive
because it's easy I'ate?
e e Is it actionable?
‘gDecin .
DON' SHOOT THE MESSENGER "nbe- * Is it accurate?
Clang Static Analyzer ° IS lt integrated to my
B et gy ool thecTnes WO I‘kﬂ OW?

* How do I manage
persistency
\— —

{) coverity’

Jenkins Analysis

* Analyzed Jenkins version 1.496 core code using up-to-date
Coverity and FindBugs (as of Dec 2012)

« . TM

¢) coverity’ FindBugs

because it's easy

) Jenkins

Different Things are Found

¢) coverity FindBugs

196 28 627

Only 28 issues shared between Coverity and FindBugs

19 @) coverity*

Comparison by Defect Type

Coverity

Unhandled exceptions

(incl. NULL deref) 79 !
Resource leaks 86 12
Concurrency problems 22 10
Critical Defect 29
Subtotal
Coding Standards, Best
Practices, Other 2 298
Total Bugs 196 627

20

13

27

28

{) coverity’

21

Freeradius Analysis

Freeradius version: 2.1.12 (released 30th Sep, 2011)
Clang Analyzer version: checker-275 (237 May, 2013)
Coverity version: 6.6.1 (July, 2013)

0 C()Verity‘3 Clang Static Analyzer

The Clang Static Analyzer is a source code analysis tool that finds
bugs in C, C++, and Objective-C programs.

> N 7

The world's most popular RADIUS Server.

{) coverity’

Different Things are Found

Only 3 issues shared between Coverity and Clang

2 @) coverity*

Comparison by Defect Type

Coverity

Memory 11)

Resource leaks 9 3
Control Flow, Concurrent

access, Other 83 30

High + Medium Defects 38

Coding Standards, Best 59

Practices, Other
Total Bugs 121 97

23

{) coverity’

Freeradius: 2.2.1 (released 17t Sep, 2013)

Security Vulnerability: “We scanned the

rlm_eap_ tls.c file with the LLVM checker-267,
taken from http://clang-analyzer.llvm.org/. It did
not find this issue. However, a Coverity scan did

discover it.”

{) coverity’

http://freeradius.org/security.html

Two years later ...Freeradius Analysis

* Freeradius version: freeradius 2.2 (released 2013)
* Clang Analyzer version: checker-275 (2374 May, 2013)
* Coverity version: 6.6.1 (July, 2013)

0 COV@I'ity‘” Clang Static Analyzer

The Clang Static Analyzer is a source code analysis tool that finds
bugs in C, C++, and Objective-C programs.

The world's most popular RADIUS Server.

25 {) coverity’

Two years laterFixed in FREERADIUS 2.2.

Coverity Clang
found in found in = Fixed in
Impact Category 2.1.12 Shared 2.1.12 2.2.1 Clang Category
High Memory - corruptions 7
High Memory - illegal accesses 4 5 3 Use-after-free
High Resource leaks 9 3 Memory leak
High Uninitialized variables 5 2 2 Assigned value is garbage
Medium API usage errors 6
Concurrent data access
Medium violations 1
Medium Control flow issues 18
Medium Error handling issues 19
Dead incremeant/
Medium Incorrect expression 14 9 3 Dead initialization/Unix API
Medium Insecure data handling 5
Medium Integer handling issues 1
Medium Null pointer dereferences 13 1 19 1 Dereference of null pointer
Medium Program hangs 1
Low Code maintainability issues 4 2 59 1 Dead Assignment
Low Parse warnings 1
Low Security best practices violatons 13 |3

Total

42 of Coverity

10 of Clang defects

defects were fixed were fixed

FreeRADIUS Quality practices
From Alan Dekok

* Use APIs which make it harder for issues to arise (explicit lengths, etc.)
* On 3.0 branch, build with *no* C compiler warnings

. Use autobuilds () builds with
clang && gcc, and builds debian packages
. Coverity:

. New Coverity builds every day, Coverity are emailed to the core team. Many can be fixed
directly from the summary in the email

. This practice ensures basic code sanity. What it *can't* do is ensure logical correctness. We've
had a few bugs slip in where the code passes all checks, but is logically incorrect. i.e. it doesn't
implement part of a protocol correctly.

. Finding those issues automatically is harder. Doing a protocol test suite for a complex daemon
is very difficult. With the 3.0 branch, we're now running more unit tests, for basic
functionality. That helps, but more tests are needed.

. For us, Coverity is an indispensable part of our daily development routine. It's helped to make
FreeRADIUS better software. And it's helped to make us better programmers.

{) coverity’

https://travis-ci.org/FreeRADIUS/freeradius-server/
https://travis-ci.org/FreeRADIUS/freeradius-server/
https://travis-ci.org/FreeRADIUS/freeradius-server/
https://travis-ci.org/FreeRADIUS/freeradius-server/
https://travis-ci.org/FreeRADIUS/freeradius-server/

How Does Your Code Compare?

The bar has been raised on what is considered good quality software
.69 defect density vs. 1.0

Defect Density by Project Size: Open Source vs. Proprietary

Lines of code Open Source Proprietary
<100k 4 51
100k-499k .6 .66
500k-1m 44 .08
>1M .75 .66
Average .69 .68

{) coverity’

SCAN.Coverity.COM — Free for the Open
Source Community
Sign Up Today

= C' | https://scan.coverity.com aw @
HE Apps ﬂ Suggested Sites || Wehb Slice Gallery [l Imported FromIE [Travel 0 Coverity® Connect... [Salesforce.com - Cu... |:1 Expense manageme... 0 Integrity Control 5.5 || Review Docs - Carm... @ HR system

¢p coverity” # Home

Coverity Scan ' static Analysis

Find and fix defects in your C/C++ or Java open source project for free.

Sign up for free »

Feedback

More than 600 open source projects use Coverity Scan

Coverity points out that we do not free [the memory] in one case and sure enough we forgot.

Prev Mext

Register your C/C++ or Java Open Source Project Today
Coverity Scan tests every line of 2. alloc_fn: St
code and potential execution path dNaraslgn:

sysram = 1loc(size);
if (lsysram)
return -ENOMEM;

The root cause of each defect is
clearly explained, making it easy to g -
fix bugs 194 if (info
& CID TO3417 (#
&, leaked_storag eaks the storage it points to,
return - ENOMEM;

info = framebuffer_alloc(®, device);

NULL)

29 {) coverity’

