
cgroup v2

Issues with the v1 interface

Goals of the v2 interface

Goals of the v2 interface

● Consistency.
● One way to achieve one goal. This ain’t perl.
● Usability not implementability.
● Flexibility with purpose.

A set of consistent interfaces and behaviors to
provide a hierarchical grouping of processes and
overlay various resource controls over the
hierarchy.

The unified hierarchy

● The one hierarchical grouping of processes.
● A process’s cgroup membership can be

specified with a single path.
● Different controllers have a common ground to

talk to each other.
● per-process, not per-thread.
● Separation between organization and control.

cgroup.subtree_control

● Enable / disable controllers on the children
cgroups of a given cgroup.

● Top-down.
● No tasks in internal nodes.

 A(b,m) - B(b,m) - C (b)

 \ - D (b) - E

A is the root and has all controllers enabled.

1. echo +blkio > A/cgroup.subtree_control
○ blkio enabled on B

2. echo +blkio > A/B/cgroup.subtree_control
○ blkio enabled on C and D

3. echo +memory > A/cgroup.subtree_control
○ memory enabled on B

 A(b,m) - B(b,m) - C (b)

 \ - D (b) - E

A B C D E

blkio A B C D D

memory A B B B B

 A(b,m) - B(b,m) - C (b)

 \ - D (b) - E

● Any controller which has any controller
enabled in its cgroup.subtree_control can’t
have processes in them.

● Root is the only exception.
● A, C, D and E can have processes in them but

B can’t.

Groups and processes never compete directly.
Groups compete against groups. Processes compete
against processes within its group.

 A(b,m) - B(b,m) - C (b)

 \ - D (b) - E

A B C D E

blkio A B C D D

memory A B B B B

The unified hierarchy

● Clear separation between cgroup core’s role
(process organization) and cgroup
controllers’ role (resource control).

● Structural constraints which rule out
ambiguous situations.

● Presents interface with consistent behavior
to userland. Enforces controllers to conform
to common conventions.

● Flexible enough to fulfill the core
functionalities but rigid enough to encourage
consistency.

Per-controller changes

Given the brownian motion each controller did,
their behaviors need to be updated to conform to
the new standard.

● Fully hierarchical.
● Organization and configuration should be

orthogonal.
● Restructuring of messed-up interfaces and

functionalities.
● General cleanups.

cpuset

● Explicit distinction between configured and
effective configurations.

● A new child always has the same effective
configuration as its parent.

● Organization is now mostly orthogonal to
configuration and its enforcement.

memory

● The current interface is schizophrenic,
especially selectable hierarchical behavior.

● Mostly useless softlimit. Heavy dependence on
hardlimit ends up shifting dynamic control
features to OOM killer.

● On-going cleanup of interface and
implementation.

● Clearly defined min, high, max limits to make
softlimit actually useful.

freezer

● The whole thing is braindamaged. A process
state which should never be visible to
userland is being exposed.

● And then working around it by bypassing OOM
killing and whatnot.

● The wait state should be merged with jobctl
stop.

blkio

● Interface being simplified without losing
functionality.

● Resource control didn’t work on writeback IO
traffic which is the majority of the write
IOs on most configurations. Being worked on.

Timeline

● Experimental implementation already working
in the upstream kernel.

● I suck at predicting timelines but it really
isn’t too far out.

● Once writeback IO control is done. The v2
interface will be made officially available.

● Controllers will be gradually enabled on the
v2 interface.

Questions?

