

What’s New in Apache HTrace
by Colin P. McCabe

About Me

● I work on HDFS and related storage technologies at
Cloudera

● Committer on the Hadoop and HTrace projects.
● Previously worked on the Ceph distributed

filesystem

Introducing Apache HTrace

● A new Apache project to do distributed tracing
● Owl-themed

What is Distributed Tracing?

● Follow specific requests across the entire cluster
● Follow requests across network and project

boundaries

Why do Distributed Tracing?

● Diagnosing distributed performance is hard
● Many timeouts and fallbacks
● Performance problems often not 100% repeatable

HBase + HDFS Performance Analysis

DataNode

SLOW DataNode

DataNode

HBase client DFSClient

NameNode

Real-World Scenarios

● The cluster is “running slower” lately... why?
● Is it worthwhile to spend time optimizing X?
● Why was the cluster slower over the weekend?
● Is the performance problem a MapReduce problem

or an HDFS problem?
● Why so many “EOFException” logs?

Previous Approaches: log4j

● Use log4j to log “especially slow” disk I/O
○ What’s “especially slow”? Won’t logging make it

slower?
○ There is no good way to map the log messages

back to the requests that had problems
○ Too many DataNode log files to look at, usually no

motivation to look
○ Similar problems with other log4j approaches

Previous Approaches: metrics

● Single node metrics through jmx, top, vmstat, etc.
○ Good for getting an overall view of throughput,

bad for identifying latency problems.
○ Average bandwidth, CPU, disk I/O, etc. numbers

often hide significant outliers
○ Hard to figure out why

■ Disk I/O stats are low… because of I/O errors?
Bottlenecks elsewhere? Low load?

HTrace Approach

● Decompose requests into trace spans
● Each distributed system uses the HTrace client

software to create trace spans while performing
certain operations.

Trace Spans

● A trace span represents a length of time. They have:
○ A description
○ Start time in milliseconds
○ End time in milliseconds
○ Unique identifier
○ Tracer ID
○ Other metadata

Trace Span relationships

● Trace spans can have “parents.” Spans form a
directed acyclic graph (DAG)

getFileInfo

Globber#globFileSystem#createFileSystem

copyFromLocal

Correlating Spans

● Span IDs are passed over Hadoop and HBase RPCs
● Each process reports the spans that were generated,

and the parents of each span.
● The processes that are being traced send their spans

to a SpanReceiver
● The SpanReceiver stores all of the span objects for

later examination.

Sampling

● Tracing all requests generates an enormous amount
of data

● It’s usually more useful to do sampling-- to trace
only < 1% of requests

● Sampling rate and type is configurable
○ CountSampler -- samples at a fixed period
○ ProbabilitySampler -- samples with a uniformly

random probability

Goals

● Language-agnostic
● Framework-agnostic
● RPC-agnostic
● Can trace both libraries and applications

Goals

● Support multiple storage backends
● Stable, well-supported client API
● (Near) Zero impact when not in use
● Can be used in production
● Integration with upstream big data and Hadoop

projects, to allow end-users to enable tracing
without writing code.

Modularity

● HTrace is language-agnostic
○ Supports Java, C, C++, …

● HTrace is RPC-agnostic
○ Hadoop RPC, HBase RPC, etc.

● Many different “span receivers” are available.

Modular Architecture

● Client library
○ htrace-core / libhtrace.so

● Span Receivers
○ htrace-hbase
○ htrace-accumulo
○ htrace-htraced

● Web UI

Client Library

● Applications use the client library to generate traces
○ For Java: htrace-core4.jar
○ For C/C++: libhtrace.so

● The client library is a shim that insulates the traced
application from the rest of htrace.
○ The client doesn’t need to care what

SpanReceiver, Sampler, or GUI we are using.
○ Downstream projects depend only on htrace-

core

Client Library Key Concepts

● Tracer
○ Represents a service or client being traced.
○ For example, the FsClient, DataNode, and

NameNode each have their own Tracer objects.
○ Created by Tracer#Builder
○ A single process may have multiple Tracer

objects.
○ Typical tracer ID: NameNode/192.168.0.1

Client Library Key Concepts

● Sampler
○ Samplers are stored inside Tracer objects.
○ Samplers implement sampling by deciding when

trace spans should be created.
○ Samplers are created from the HTrace

configuration passed into the Tracer#Builder
object.

Client Library Key Concepts

● TraceScope
○ Trace scopes are created by Tracer#newScope.
○ The new TraceScope may or may not have a span

associated with it. If it does, that span will be
sent to the SpanReceiver when the TraceScope is
closed.

Client Library Key Concepts

● Tracer#newScope
○ If there is already a Trace scope in the current

thread, we use that existing scope’s decision
about whether to trace.

○ If there is not already a trace scope then the new
scope is “top-level” and we ask the Tracer’s
Sampler whether we should create a span

○ We trace complete requests, not fragments

Client Library Key Concepts

● TraceScope
○ Creating a TraceScope creates
○ For example, the FsClient, DataNode, and

NameNode each have their own Tracer objects.
○ A single process may have multiple Tracer

objects.
○ Typical tracer ID: NameNode/192.168.0.1
○ Tracer objects are used to create trace scopes.

Example Code

Tracer tracer = Tracer.Builder(“MyApp”).build();
try {
 TraceScope scope = tracer.newScope(“runFoo”);
 try {
 runFoo(Arrays.copyOfRange(argv, 1, argv.length));
 } finally {
 scope.close();
 }
} finally {
 tracer.close();
}

SpanReciever

● A SpanReceiver is a place to send trace spans.
● To be useful, a SpanReceiver needs to provide easy

access to those trace spans. It should store them in
some indexed form to support lookups and analysis.

● SpanReceivers may use existing NoSQL datastores to
scale (like HBaseSpanReciever) or implement their
own infrastructure (like HTracedSpanReceiver)

HBaseSpanReceiver

● Stores HTrace spans in HBase
● See the htrace-hbase subproject in htrace.git
● Very effective for users who already have HBase

deployed
● Very scalable

AccumuloSpanReceiver

● Stores HTrace spans in Accumulo
● Maintained by the Accumulo community

HTracedSpanReceiver

● Stores HTrace spans in a separate htraced daemon
● htrace uses LevelDB to store trace spans in an

optimized and indexed format
● Easier to get started with than other options
● Better integration with GUI (for now…)

What’s New in HTrace 4.0?

4.0

API Improvements in HTrace 4.0

● Better support for tracing library code
○ Previously we focued on tracing just server code
○ The 4.0 API avoids instantiating multiple

SpanReceiver objects if tracing is configured for
multiple services (example: HDFS client + HBase
server)

○ Support multiple Tracer objects with appropriate
names (i.e. FileSystem vs. RegionServer)

API Improvements in HTrace 4.0

● Simplified configuration
○ Can specify the span receiver to use only once by

setting hadoop.htrace.span.receiver.classes,
rather than once per type of Hadoop daemon.

○ Samplers are now configured through HTrace
itself, rather than the applications which use
HTrace.

API Improvements in HTrace 4.0

● Easier to use API for programmers
○ 3.x required a lot of boilerplate to add tracing to

an application; 4.x takes care of most of this
automatically.

○ Programmers don’t need to decide whether to
pass in a Sampler object or not when creating a
trace scope. The sampler will be used
automatically for top level scopes.

API Improvements in HTrace 4.0

● Moved to using 128-bit randomly generated IDs for
Spans
○ For all practical purposes, 128-bit IDs eliminate

the possibility of collisions that existed with 64-
bit IDs

API Improvements in HTrace 4.0

● Adopted backwards compatibility policy for htrace-
core
○ We will not make backwards-incompatible

changes to htrace-core during HTrace 4.x
○ Avoid CLASSPATH issues in downstream projects

● Smooth migration from 3.x to 4.x, since htrace-core
from 3.x and 4.x can both be on the CLASSPATH.
Different namespaces and jar names.

Build System Improvements in HTrace 4.0

● Fixed numerous build bugs and Maven warnings
● We established a postcommit build on Jenkins, using

Docker
○ Using Docker also helps new developers get

started quickly without hunting down
dependencies

○ Reproducible build

New Graphical User Interface in HTrace 4.0

● Supports visualizing requests from end-to-end.
● Can search for trace spans by multiple different

criteria.
● Can compare two different requests on the same

timeline.

New Graphical User interface in HTrace 4.0

● Implementation
○ Javascript / REST
○ Bootstrap
○ Backbone.js

● Goal: connect graphical user interface to many
different SpanReceivers. Currently hooked up only
to HTracedSpanReceiver.

HTrace Graphical Interface

HTrace 4.0 Summary

● Many improvements to the core client library and to
our compatibility policies.

● Ready for production.
● New graphical user interface supplies the missing

piece for understanding trace data.

HTrace Community

● Vibrant upstream community
○ Contributors from NTT Data, Cloudera,

Hortonworks, Facebook, and others
○ Two releases in the last few months-- 4.0 and

4.0.1
○ Integration and sharing of ideas with Hadoop and

related projects

Cool things to work on in HTrace

● Language support
○ Test C/C++ support
○ Add CPython or Rust clients wrapping libhtrace.

so
○ Write a better Golang client

● Optimization
○ Optimize HTraced span receiver and other span

receivers to minimize network traffic and
performance impacts

Cool things to work on in HTrace

● Integration
○ Integrate HTrace into YARN and MR
○ Update Accumulo integration to 4.x

● GUI
○ Connect the GUI to HBaseSpanReceiver and

other span receivers
○ Better aggregate views?

HTrace Q & A

Thanks for Listening!

http://www.cloudera.com/careers

http://www.cloudera.com/careers
http://www.cloudera.com/careers

