
SR-IOV ixgbe driver limitations and
improvement

2016-07-15

Hiroshi Shimamoto

3 © NEC Corporation 2015 NEC Group Internal Use Only3 © NEC Corporation 2016

Who am I

Hiroshi Shimamoto

▌Working for NEC

▌Main activities in open source community

Carrier Grade Linux

Virtualization

Packet Processing, DPDK

to Make Linux system usable for Telecom Carriers

Outline

SR-IOV and ixgbe implementation

SR-IOV ixgbe limitations for NFV

Addressing the issues

Future work and possible security issues

5 © NEC Corporation 2015 NEC Group Internal Use Only5 © NEC Corporation 2016

▌What is SR-IOV

One of device virtualization technology

Most of people here may know it

▌In SR-IOV enabled PCI device provides PF (Physical Function)
and VF (Virtual Function)

VF will be used directly in VM

PCI device

SR-IOV

VF
0

PF VF
1

VF
2 ...

VM VM VM

PCI pass through

6 © NEC Corporation 2015 NEC Group Internal Use Only6 © NEC Corporation 2016

Why SR-IOV?

▌I/O in virtual machines is a performance bottleneck

▌Especially packet switching between VM and host

▌Technologies were introduced to address network performance

PCI pass through

SR-IOV

DPDK

7 © NEC Corporation 2015 NEC Group Internal Use Only7 © NEC Corporation 2016

SR-IOV and etc. comparison

▌Brief pros and cons each technology

PCI Pass through SR-IOV DPDK

pros Hardware
performance

Multiple VMs

Hardware
performance

Multiple VMs

Software flexibility

No special driver in
guest

cons Single VM Device support

VF driver in guest

Consume much
CPU power

8 © NEC Corporation 2015 NEC Group Internal Use Only8 © NEC Corporation 2016

How SR-IOV implemented in Intel 82599

▌Target device: Intel 82599 10GbE Controller and ixgbe driver for
PF and ixgbevf driver for VF

▌There are 64 VMDq (Virtual Machine Device queue) in 82599

Calls this queue pool

For SR-IOV, each VF has associated pool

82599 switches a packet to pool (VF)

▌The current ixgbe driver map

VF pool

0 0

1 1

: :

N N

PF N+1

Intel 82599 10GbE controller datasheet URL
http://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html

9 © NEC Corporation 2015 NEC Group Internal Use Only9 © NEC Corporation 2016

Packet switching in Intel 82599

▌In SR-IOV mode

▌82599 chip switches a packet to corresponding pool

ref. datasheet
7.10.3 Packet Switching

82599 NIC

VF
0

PFVF
1

VF
2

...

Packet Switch

Rx Tx

pools

10 © NEC Corporation 2015 NEC Group Internal Use Only10 © NEC Corporation 2016

Rx packet switching

▌Receive a packet from outside

▌Step

1. Exact unicast or multicast match

2. Broadcast

3. Unicast hash*

4. Multicast hash

5. Multicast promiscuous*

6. VLAN group

7. Default pool

8. Ethertype filters

9. PFVFRE

10.Mirroring*

VF
0

PFVF
1

VF
2

...

Packet Switch

Note*
driver didn’t support these features ref. datasheet

7.10.3.3 Rx Packet Switching

11 © NEC Corporation 2015 NEC Group Internal Use Only11 © NEC Corporation 2016

Tx packet switching

▌Receive a packet from device (PF and/or VF)

▌Step

1. Exact unicast or multicast match

2. Broadcast

3. Unicast hash*

4. Multicast hash

5. Multicast promiscuous*

6. Filer source pool

7. VLAN groups

8. Forwarding to the network

9. PFVFRE

10.Mirroring*

11.PFVFRE

VF
0

PFVF
1

VF
2

...

Packet Switch

Note*
driver didn’t support these features ref. datasheet

7.10.3.4 Tx Packet Switching

12 © NEC Corporation 2015 NEC Group Internal Use Only12 © NEC Corporation 2016

Use Intel 82599 NIC SR-IOV as switch

▌Typical use case

Intel 82599 NIC

PFVF
2 ...

Virtualization

VM0
Guest OS

VF driver

VF
0

NIC

VM1
Guest OS

VF
1

VF driver

NIC

switch

13 © NEC Corporation 2015 NEC Group Internal Use Only13 © NEC Corporation 2016

NFV (Network Function Virtualization)

▌Using virtualization technology, implements Network Functions
on general purpose hardware, to improve flexibility, agility and
efficiency

▌Network Function is virtualized

 VNF (Virtual Network Function) is realized on VM

Virtualization Layer

Orchestration/Resource Management

IMS

VM

VM

EPC

VM

VM

L3SW

VM

VM

GW

VM

VM

Data Base

VM

VM

App Server

VM

VM
IMS EPC L3SW GW

Data
Base

App
Server

Dedicated/Specific Hardware General Purpose Hardware

14 © NEC Corporation 2015 NEC Group Internal Use Only14 © NEC Corporation 2016

SR-IOV ixgbe driver limitations for NFV

▌Using Intel 82599 and SR-IOV, 3 critical limitations for NFV

 VLAN filtering

 Multicast addresses

 Unicast promiscuous

Come from hardware limitation and software (driver) limitation

▌Explain with 2 use cases

Router

Layer 2 switch

Intel 82599 NIC

PFVF
2 ...

Virtualization

VNF

Guest OS

VF driver

VF
0

NIC

VNF

Guest OS

VF
1

VF driver

NIC

switch

NFV use case
VNF is run on VM

15 © NEC Corporation 2015 NEC Group Internal Use Only15 © NEC Corporation 2016

NFV use case 1

▌Network Function: Router

VLAN is used to virtualize the network

Access NetworkUser Equipment Private Network

VNF

VLAN:1

VLAN:2

VLAN:3

VLAN:N

...

Terminates
many VLANs
and IPs

...

16 © NEC Corporation 2015 NEC Group Internal Use Only16 © NEC Corporation 2016

VLAN filtering limitation

▌Intel 82599 has hardware VLAN filter

▌The problem comes from

 VLAN filter has only 64 entries

 Driver always enable VLAN filter if SR-IOV enabled

 Only 64 VLANs can be used with SR-IOV

17 © NEC Corporation 2015 NEC Group Internal Use Only17 © NEC Corporation 2016

Example: VF device returns error against adding VLAN

▌Try to create 64 VLANs on VM

for i in `seq 1 64`; do
> echo "vlan $i"
> ip link add link ens6 name ens6.$i type vlan id $i
> done

vlan 1
vlan 2
:

vlan 63
vlan 64
RTNETLINK answers: Permission denied

Note
The ixgbe driver use the first entry for VLAN 0,
that means actual the number of VLANs is 63

18 © NEC Corporation 2015 NEC Group Internal Use Only18 © NEC Corporation 2016

Enabling VLAN filter automatically in driver (latest)

▌upstream

static void ixgbe_vlan_promisc_enable(struct ixgbe_adapter *adapter)
{

:
switch (hw->mac.type) {
case ixgbe_mac_82599EB:
case ixgbe_mac_X540:
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
case ixgbe_mac_x550em_a:
default:

if (adapter->flags & IXGBE_FLAG_VMDQ_ENABLED)
break;

/* fall through */
case ixgbe_mac_82598EB:

/* legacy case, we can just disable VLAN filtering */
vlnctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
vlnctrl &= ~(IXGBE_VLNCTRL_VFE | IXGBE_VLNCTRL_CFIEN);
IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlnctrl);
return;

}

19 © NEC Corporation 2015 NEC Group Internal Use Only19 © NEC Corporation 2016

Enabling VLAN filter automatically in driver (old)

▌previous version

void ixgbe_set_rx_mode(struct net_device *netdev)
{

:
:

vlnctrl &= ~(IXGBE_VLNCTRL_VFE | IXGBE_VLNCTRL_CFIEN);
if (netdev->flags & IFF_PROMISC) {

hw->addr_ctrl.user_set_promisc = true;
fctrl |= (IXGBE_FCTRL_UPE | IXGBE_FCTRL_MPE);
vmolr |= IXGBE_VMOLR_MPE;
/* Only disable hardware filter vlans in promiscuous mode
* if SR-IOV and VMDQ are disabled - otherwise ensure
* that hardware VLAN filters remain enabled.
*/
if (adapter->flags & (IXGBE_FLAG_VMDQ_ENABLED |

IXGBE_FLAG_SRIOV_ENABLED))
vlnctrl |= (IXGBE_VLNCTRL_VFE | IXGBE_VLNCTRL_CFIEN);

20 © NEC Corporation 2015 NEC Group Internal Use Only20 © NEC Corporation 2016

Multicast address limitation

▌The interface (PF-VF mailbox API) limits the number of addresses

▌Only first 30 multicast addresses can be registered

▌Overflowed addresses are silently dropped

 Having Multicast promiscuous is a solution

/* Each entry in the list uses 1 16 bit word. We have 30
* 16 bit words available in our HW msg buffer (minus 1 for the
* msg type). That's 30 hash values if we pack 'em right. If
* there are more than 30 MC addresses to add then punt the
* extras for now and then add code to handle more than 30 later.
* It would be unusual for a server to request that many multi-cast
* addresses except for in large enterprise network environments.
*/

cnt = netdev_mc_count(netdev);
if (cnt > 30)

cnt = 30;
msgbuf[0] = IXGBE_VF_SET_MULTICAST;
msgbuf[0] |= cnt << IXGBE_VT_MSGINFO_SHIFT;

21 © NEC Corporation 2015 NEC Group Internal Use Only21 © NEC Corporation 2016

Why so many multicast addresses?

▌Our case is to support many IPv6 addresses on VF

For Neighbor Discovery, each IPv6 address requires corresponding multicast
address

Unicast address

Multicast MAC

2001:0000 0000:0000 0000:0000 00 12:3456

ff02:0000 0000:0000 0000:0001 ff 12:3456

33:33 ff:12:34:56

Solicited node multicast address

22 © NEC Corporation 2015 NEC Group Internal Use Only22 © NEC Corporation 2016

Example: Cannot receive multicast packet

▌Some multicast packets are not passed to VF, then failed to ND

▌Assign 30 IPv6 addresses on VM (different network address)

▌Ping from other physical machine to VM

for i in `seq 1 30`; do
> ip -6 addr add 2001:$i::1:$i/64 dev ens6
> done

for i in `seq 1 30`; do ping6 –w 1 –c 1 –I eth2 2001:$i::1:$i; done
:

PING 2001:28::1:28(2001:28::1:28) from 2001:28::1 eth2: 56 data bytes

--- 2001:28::1:28 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 1000ms

23 © NEC Corporation 2015 NEC Group Internal Use Only23 © NEC Corporation 2016

NFV use case 2

▌Network Function: L2 switch

Access NetworkUser Equipment Private Network

VNF

...

MAC:A

MAC:B

Left to right
both of MAC:A and
MAC:B must be able to
receive through this VF

dst:A

dst:B

24 © NEC Corporation 2015 NEC Group Internal Use Only24 © NEC Corporation 2016

Unicast promiscuous

▌Only packets which match the registered MAC can be received

▌VNF should be able to handle every MAC addresses in network

▌Hard to register all MAC addresses in L2 network

 We want Unicast promiscuous feature in VF

25 © NEC Corporation 2015 NEC Group Internal Use Only25 © NEC Corporation 2016

SR-IOV limitations for NFV and current status

▌VLAN filtering

Only 64 VLANs can be used

 Proposed to add an option to disable hardware VLAN filter, but

not accepted

▌Multicast addresses

Only 30 Multicast addresses can be used

 Implemented VF Multicast promiscuous mode in ixgbe/ixgbevf
driver in Linux 4.4

▌Unicast promiscuous

Single unicast MAC address can be used

 Hardware limitation

26 © NEC Corporation 2015 NEC Group Internal Use Only26 © NEC Corporation 2016

Addressing Multicast addresses limitation

▌There is a hardware feature in 82599

VF Multicast promiscuous mode

▌But driver didn’t support that feature

▌Implement new PF-VF mailbox API in ixgbe and ixgbevf

▌First, automatically enable to VF multicast promiscuous when the
number of addresses overs 30

▌Suggested way, implement xcast mode in VF

There is ALLMULTI flag that means that every multicast packet is received in
this device

 Accepted in Linux 4.4

27 © NEC Corporation 2015 NEC Group Internal Use Only27 © NEC Corporation 2016

PF-VF mailbox APIs

▌There are mailbox APIs

Communicate between PF and VF

version API description

legacy RESET VF requests reset

SET_MAC_ADDR VF requests PF to set MAC addr

SET_MULTICAST VF requests PF to set MC addr

SET_VLAN VF requests PF to set VLAN

1.0 SET_LPE VF requests PF to set VMOLR.LPE

SET_MACVLAN VF requests PF for unicast filter

API_NEGOTIATE negotiate API version

1.1 GET_QUEUES get queue configuration

1.2 GET_RETA VF requests for RETA

GET_RSS_KEY get RSS key

UPDATE_XCAST_MODE VF requests PF to set MC mode

28 © NEC Corporation 2015 NEC Group Internal Use Only28 © NEC Corporation 2016

Implementation (PF ixgbe)

▌Handle UPDATE_XCAST_MODE API

--- a/drivers/net/ethernet/intel/ixgbe/ixgbe_sriov.c
+++ b/drivers/net/ethernet/intel/ixgbe/ixgbe_sriov.c

:

@@ -1066,6 +1122,9 @@ static int ixgbe_rcv_msg_from_vf(struct ixgbe_adapter
*adapter, u32 vf)

case IXGBE_VF_GET_RSS_KEY:
retval = ixgbe_get_vf_rss_key(adapter, msgbuf, vf);
break;

+ case IXGBE_VF_UPDATE_XCAST_MODE:
+ retval = ixgbe_update_vf_xcast_mode(adapter, msgbuf, vf);
+ break;

default:
e_err(drv, "Unhandled Msg %8.8x¥n", msgbuf[0]);
retval = IXGBE_ERR_MBX;

29 © NEC Corporation 2015 NEC Group Internal Use Only29 © NEC Corporation 2016

Implementation (VF ixgbevf)

▌Request to PF (from ixgbevf_set_rx_mode)

--- a/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c
+++ b/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c
@@ -1894,9 +1894,17 @@ static void ixgbevf_set_rx_mode(struct net_device
*netdev)
{

struct ixgbevf_adapter *adapter = netdev_priv(netdev);
struct ixgbe_hw *hw = &adapter->hw;

+ unsigned int flags = netdev->flags;
+ int xcast_mode;
+
+ xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
+ (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
+ IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;

spin_lock_bh(&adapter->mbx_lock);

+ hw->mac.ops.update_xcast_mode(hw, netdev, xcast_mode);
+

/* reprogram multicast list */
hw->mac.ops.update_mc_addr_list(hw, netdev);

30 © NEC Corporation 2015 NEC Group Internal Use Only30 © NEC Corporation 2016

Security consideration

▌Enabling VF Multicast promiscuous mode causes security issues

 Can see all multicast packets through this device

 Can hurt performance

NIC duplicates packets and does DMA to each pool

 Make only trusted VF can enable Multicast promiscuous mode

static int ixgbe_update_vf_xcast_mode(struct ixgbe_adapter *adapter,
u32 *msgbuf, u32 vf)

{

:

if (xcast_mode > IXGBEVF_XCAST_MODE_MULTI &&
!adapter->vfinfo[vf].trusted) {

xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
}

31 © NEC Corporation 2015 NEC Group Internal Use Only31 © NEC Corporation 2016

Implement functionality to trust VF

▌Add new operation “set_vf_trust” in net_device_ops

▌Also add support VF trust operation in iproute2 (ip command)

ip link set dev enp3s0f0 vf 1 trust on
(dmesg)
kernel: ixgbe 0000:03:00.0 enp3s0f0: VF 1 is trusted
kernel: ixgbevf 0000:03:10.2: NIC Link is Down
kernel: ixgbe 0000:03:00.0 enp3s0f0: VF Reset msg received from vf 1
kernel: ixgbevf 0000:03:10.2: NIC Link is Up 10 Gbps

ip link set dev enp3s0f0 vf 1 trust off
(dmesg)
kernel: ixgbe 0000:03:00.0 enp3s0f0: VF 1 is not trusted
kernel: ixgbevf 0000:03:10.2: NIC Link is Down
kernel: ixgbe 0000:03:00.0 enp3s0f0: VF Reset msg received from vf 1
kernel: ixgbevf 0000:03:10.2: NIC Link is Up 10 Gbps

Note
When trusted state is changed, target vf is reset

32 © NEC Corporation 2015 NEC Group Internal Use Only32 © NEC Corporation 2016

Future work and possible security issues

▌Still, there are limitations

 VLAN filtering

 Unicast promiscuous

▌Possible security issues

 VLAN filter is not isolated

 Multicast hash table is not handled strictly

33 © NEC Corporation 2015 NEC Group Internal Use Only33 © NEC Corporation 2016

VLAN filtering

▌Disabling hardware VLAN filtering may solve this issue

▌But

 It could break existing network feature (DCB, FCoE)

 Broadcast(Multicast) storm could cause performance degradation

 Security issue, BC/MC packets can be seen in every VF

▌Maybe okay if the network and VMs are well managed

▌Another point is that there is no suitable knob to do it now

What command is right to turn VLAN filter off in general

34 © NEC Corporation 2015 NEC Group Internal Use Only34 © NEC Corporation 2016

Unicast promiscuous

▌Supporting this feature in hardware is the best

▌No VF unicast promiscuous feature in 82599 unfortunately

35 © NEC Corporation 2015 NEC Group Internal Use Only35 © NEC Corporation 2016

Hardware support in X540 and X550

▌Later NIC chips, X540 and X550 support VLAN promiscuous and
Unicast promiscuous mode per VF

▌The issues could be solved with X540/X550 chip

▌To make framework for X540/X550 and use the same semantics
for 82599 may be needed

Field Bit(s) Description

Reserved 23:0 21:0 Reserved

UPE 22 Unicast Promiscuous Enable

VPE 23 VLAN Promiscuous Enable

AUPE 24 Accept Untagged Packet Enable

ROMPE 25 Receive Overflow Multicast Packets

ROPE 26 Receive MAC Filters Overflow

BAM 27 Broadcast Accept

MPE 28 Multicast Promiscuous Enable

Reserved 31:29 Reserved

PF VM L2Control Register

new
feature bit

36 © NEC Corporation 2015 NEC Group Internal Use Only36 © NEC Corporation 2016

Ideas

▌Mirroring

▌Unicast hash

Those features are not used/supported in driver

37 © NEC Corporation 2015 NEC Group Internal Use Only37 © NEC Corporation 2016

Possible security issues

▌In the current ixgbe/ixgbevf implementation, there are 2 issues
to be considered

 VLAN filter is not isolated

Single VLAN filter table

No limitation to request new VLAN from VF

 If a VM requests 64 VLANs, other VMs never use different VLANs

 Single multicast hash table

Using multicast hash table for switching multicast packet to VF

SET_MULTICAST API is only for setting hash value, no unset functionality

Manipulating IP address assignment can make VF to have multicast
promiscuous behavior

38 © NEC Corporation 2015 NEC Group Internal Use Only38 © NEC Corporation 2016

VLAN filter is not isolated

▌If a VM uses all VLANs, other VM can’t make new VLAN

(VM0) # for i in `seq 1 64`; do
> echo "vlan $i"
> ip link add link ens6 name ens6.$i type vlan id $i
> done

vlan 1
vlan 2
:

vlan 63
vlan 64
RTNETLINK answers: Permission denied

(VM1) # ip link add link ens6 name ens6.64 type vlan id 64
RTNETLINK answers: Permission denied

and if VM does not shutdown gracefully,
registered VLAN filter entry remains

39 © NEC Corporation 2015 NEC Group Internal Use Only39 © NEC Corporation 2016

Single multicast hash table

▌ixgbe driver uses multicast hash table (MTA register)

▌Multicast Table Array is a 4Kb bitmap

i. 82599 make 12 bits hash value from MAC

ii. If corresponding bit in MTA is set, it means hit

iii. Check VF capability PFVFL2FLT.ROMPE and transfer packet

 If every bits in MTA are set, every multicast packet matches

and transferred to pool

▌MTA bit is set by SET_MULTICAST API and no unset API

▌PFVFL2FLT.ROMPE bit always set by receiving SET_MULTICAST
API message

▌Long living host may have unnecessary bits in MTA

40 © NEC Corporation 2015 NEC Group Internal Use Only40 © NEC Corporation 2016

Example: Can receive all multicast packet

▌Invoke SET_MULTICAST from VF each IP address

▌Assign 30 IP addresses again

▌Ping from other physical machine to VM

for i in `seq 1 30`; do
> ip -6 addr add 2001:$i::1:$i/64 dev ens6
> ip -6 addr del 2001:$i::1:$i/64 dev ens6
> done

for i in `seq 1 30`; do ping6 –w 1 –c 1 –I eth2 2001:$i::1:$i; done
:

PING 2001:30::1:30(2001:30::1:30) from 2001:30::1 eth2: 56 data bytes
64 bytes from 2001:30::1:30: icmp_seq=1 ttl=64 time=0.947 ms

--- 2001:30::1:30 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.947/0.947/0.947/0.000 ms

for i in `seq 1 30`; do
> ip -6 addr add 2001:$i::1:$i/64 dev ens6
> done

41 © NEC Corporation 2015 NEC Group Internal Use Only41 © NEC Corporation 2016

Summary

▌SR-IOV in Intel 82599 and ixgbe driver implementation

▌SR-IOV ixgbe driver limitations for NFV

VLAN filtering

Multicast addresses

Unicast promiscuous

▌Addressing Multicast addresses issue

 Implement new mailbox API and ndo VF trust

▌Future work and possible security issues

▌Questions?

▌E-Mail: h-shimamoto@ct.jp.nec.com

