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Why This Presentation?

● Lots of questions about TLS on the Tomcat mailing lists

● It is clear from the questions many folks don’t understand how
TLS works

● Debugging something you don’t understand is much harder
than debugging something you do understand

● I’ll use SSL and TLS interchangeably (as do the Tomcat docs)
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Agenda

● Cryptography basics

● TLS

● Configuring Tomcat for TLS

● Questions
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Cryptography
Basics
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Cryptography Basics: Symmetric Encryption

● Use the same key to encrypt and decrypt
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Cryptography Basics: Asymmetric Encryption

● Pair of keys, A and B
– If key A is used to encrypt, key B must be used to decrypt

– If key B is used to encrypt, key A must be used to decrypt

● Very difficult to determine one key from the other

● One key is used as the “Public Key”
– This key is made widely available to the general public

● One key is used as the “Private Key”
– This key must be protected
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Cryptography Basics: Asymmetric Encryption

● Use different keys to encrypt and decrypt
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Cryptography Basics: Asymmetric Encryption

● You can use the keys either way around
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Cryptography Basics: Hash Functions

● Generate a fingerprint (hash) for the given input

● A small change in the input results in a large change in the hash

● Very difficult to generate an input for a given hash
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Cryptography Basics: Digital Signatures

● Proves a document was sent by a particular entity

Plain
Text

Hash
Function

HashHash
Enc.
Hash

Private Key

Plain
Text

Enc.
Hash

Digitally
Signed



TM

  

Cryptography Basics: Digital Signatures

● Validating a digital signature
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Cryptography Basics: Digital Signatures

● If the hashes match then:
– The public key decrypted the digital signature

– Therefore the private key must have created the digital signature

– Therefore the recipient can be certain that the owner of the private
key sent the document

● Determining who owns the private key is the next problem
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Cryptography Basics: Certificates

● Proves a public key is associated with a given identity
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Cryptography Basics: Certificates

● To validate the Certificate Authority’s signature, you need to be
able to link their public key to their identify

● You do this with a certificate too

● This builds a trust chain

● At the top of the chain is the root certificate from a root
certificate authority

● There are multiple root certificate authorities
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Cryptography Basics: Root Certificates

● Root  certificates are self-signed

● Some other mechanism is required to trust root certificates
– Usually installed by the operating system

– You can manually validate them by checking them against the
published versions on the CA’s web site
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TLS
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TLS

● TLS connections are initiated by a handshake

● Handshake
– Mandatory steps

– Optional steps

● This section considers the common case
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TLS: Handshake Starting Point

● Server
– Private key

– Certificate
● Public Key
● ID (domain name)

– List of supported algorithms

● Client
– List of trusted (Root) CAs

– List of supported algorithms
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TLS: Handshake Step 1: ClientHello

● Client generates random
number

● Client sends message to
server
– Client’s random number

– Client’s supported algorithms
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TLS: Handshake Step 2: ServerHello

● Server generates random
number

● Server compares algorithms
– Selects appropriate

algorithms

● Server sends message to
client
– Server’s random number

– Selected algorithms
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TLS: Handshake Step 3: Certificate

● Server sends message to
client
– Server’s certificate

● Client validates server
certificate
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TLS: Handshake Step 6: ServerHelloDone

● Server sends message to
client
– No content
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TLS: Handshake Step 8: ClientKeyExchange

● Client generates pre-master
secret

● Client encrypts PMS with
server’s public key

● Client sends message to
server
– Encrypted PMS
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TLS: Handshake Step 10: ChangeCipherSpec

● Client creates master secret
– Rc + Rs + PMS

● Cilent switches to encrypted mode
– Algorithm agreed in step 2

– Symmetric encryption with MS

● Client sends message to server
– No content
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TLS: Handshake Step 11: Finished

● Client has completed TLS
handshake

● Client sends message to
server
– No content
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TLS: Handshake Step 12: ChangeCipherSpec

● Server decrypts PMS

● Server creates master secret
– Rc + Rs + PMS

– Server switches to encrypted
mode

– Algorithm agreed in step 2

– Symmetric encryption with MS

● Server sends message to client
– No content
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TLS: Handshake Step 13: Finished

● Server has completed TLS
handshake

● Server sends message to
client
– No content
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TLS: Encrypted Communication

● Algorithm agreed in step 2

● Symmetric

● Use Master Secret as key
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TLS: Extensions

● Client certificate authentication
– Client authenticates to server with a

certificate

● Server Name Indication
– Client tells server which host is wants to

connect to and server sends
appropriate certificate (virtual hosting)

● Application Layer Protocol Negotiation
– Client and server agree protocol to for

encrypted communication during
handshake
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Configuring
Tomcat for TLS



TM

  

Requirements

● Private key

● Server certificate

● Certificate chain

● Configuration in server.xml
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File Formats

● .pem / .crt / .cer / .key
– ASCII

– Key, certificate or chain

● .der
– Binary form of .pem

● .p7b (PKCS7)
– ASCII

– Cert and chain only

● .p12 (PKCS12)
– Binary

– Key, cert or chain

● .jks / .keystore
– Binary

– Java specific

– Key, cert or chain
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Which Format Do I Need?

● It depends…

● Tomcat 7 or 8, BIO or NIO
– JSSE implementation, JSSE configuration

– Keystore

– PKCS12 with Java 7+

● Tomcat 7 or 8 APR/native
– OpenSSL implementation, OpenSSL configuration

– PEM
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Which Format Do I Need?

● Tomcat 8.5 and 9, NIO and NIO2
– KeyStore, PKCS12 or PEM

– JSSE or OpenSSL for configuration

– JSSE or OpenSSL for implementation

– Can’t mix JSSE and OpenSSL attributes in a single configuration

● Tomcat 8.5 and 9, APR/native
– PEM

– OpenSSL implementation and OpenSSL configuration
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Tomcat 7 or 8: BIO or NIO

<Connector

    protocol="org.apache.coyote.http11.Http11NioProtocol"

    port="8443"

    SSLEnabled="true" scheme="https" secure="true"

    sslProtocol="TLS"

    keystoreFile="${catalina.base}/conf/localhost.jks"

    keystorePass="changeit"

    />
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Tomcat 7 or 8: APR/native

<Connector

    protocol="org.apache.coyote.http11.Http11AprProtocol"

    port="8443" maxThreads="200"

    SSLEnabled="true" scheme="https" secure="true"

    SSLProtocol="TLSv1+TLSv1.1+TLSv1.2"

    SSLCertificateFile="/usr/local/ssl/server.crt"

    SSLCertificateKeyFile="/usr/local/ssl/server.pem"

    SSLVerifyClient="optional"

    />
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Changes in Tomcat 8.5

● Tomcat 7 / Tomcat 8
– 1 Connector, 1 Hostname, 1 certificate

● Tomcat 8.5 / Tomcat 9
– 1 Connector, 1 or more Hostnames

– 1 Hostname, 1 or more certificates (different types)

● Tomcat 8 style configuration is supported but deprecated
– Connector level attributes are equivalent to the default TLS Host
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Tomcat 8.5 onwards: NIO or NIO2 

<Connector

    protocol="org.apache.coyote.http11.Http11NioProtocol"

    port="8443" maxThreads="150" SSLEnabled="true">

  <SSLHostConfig>

    <Certificate

        certificateKeystoreFile="conf/localhost-rsa.jks"

        type="RSA" />

  </SSLHostConfig>

</Connector>
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Tomcat 8.5 onwards: APR/Native

<Connector

    protocol="org.apache.coyote.http11.Http11AprProtocol"

    port="8443" maxThreads="150" SSLEnabled="true">

  <SSLHostConfig>

    <Certificate

        certificateKeystoreFile="conf/localhost-rsa.jks"

        type="RSA" />

  </SSLHostConfig>

</Connector>
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Questions
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