
TM

TomcatCon
Apache Tomcat and TLS

Mark Thomas

TM

Introduction

TM

Why This Presentation?

● Lots of questions about TLS on the Tomcat mailing lists

● It is clear from the questions many folks don’t understand how
TLS works

● Debugging something you don’t understand is much harder
than debugging something you do understand

● I’ll use SSL and TLS interchangeably (as do the Tomcat docs)

TM

Agenda

● Cryptography basics

● TLS

● Configuring Tomcat for TLS

● Questions

TM

Cryptography
Basics

TM

Cryptography Basics: Symmetric Encryption

● Use the same key to encrypt and decrypt

Cipher
Text

Private Key

Plain
Text

Cipher
Text

Private Key

Plain
Text

TM

Cryptography Basics: Asymmetric Encryption

● Pair of keys, A and B
– If key A is used to encrypt, key B must be used to decrypt

– If key B is used to encrypt, key A must be used to decrypt

● Very difficult to determine one key from the other

● One key is used as the “Public Key”
– This key is made widely available to the general public

● One key is used as the “Private Key”
– This key must be protected

TM

Cryptography Basics: Asymmetric Encryption

● Use different keys to encrypt and decrypt

Cipher
Text

Plain
Text

Cipher
Text

Plain
Text

Private Key

Public Key

TM

Cryptography Basics: Asymmetric Encryption

● You can use the keys either way around

Cipher
Text

Plain
Text

Cipher
Text

Plain
Text

Private Key

Public Key

TM

Cryptography Basics: Hash Functions

● Generate a fingerprint (hash) for the given input

● A small change in the input results in a large change in the hash

● Very difficult to generate an input for a given hash

Plain
Text Hash

Function

Hash

TM

Cryptography Basics: Digital Signatures

● Proves a document was sent by a particular entity

Plain
Text

Hash
Function

HashHash
Enc.
Hash

Private Key

Plain
Text

Enc.
Hash

Digitally
Signed

TM

Cryptography Basics: Digital Signatures

● Validating a digital signature

Plain
Text

Hash
Function

HashHash

Enc.
Hash

Public Key

Hash

TM

Cryptography Basics: Digital Signatures

● If the hashes match then:
– The public key decrypted the digital signature

– Therefore the private key must have created the digital signature

– Therefore the recipient can be certain that the owner of the private
key sent the document

● Determining who owns the private key is the next problem

TM

Cryptography Basics: Certificates

● Proves a public key is associated with a given identity

ID
Public
Key Hash

Function

HashHash
Enc.
Hash

CA Private Key

ID
Public
Key

Enc.
Hash

Cert-
ificate

TM

Cryptography Basics: Certificates

● To validate the Certificate Authority’s signature, you need to be
able to link their public key to their identify

● You do this with a certificate too

● This builds a trust chain

● At the top of the chain is the root certificate from a root
certificate authority

● There are multiple root certificate authorities

TM

Cryptography Basics: Root Certificates

● Root certificates are self-signed

● Some other mechanism is required to trust root certificates
– Usually installed by the operating system

– You can manually validate them by checking them against the
published versions on the CA’s web site

My
Cert.

Signed By

My
Cert.

Signed By

My
Cert.

Signed By

Root
CA

Cert.

Self
Signed

TM

TLS

TM

TLS

● TLS connections are initiated by a handshake

● Handshake
– Mandatory steps

– Optional steps

● This section considers the common case

TM

TLS: Handshake Starting Point

● Server
– Private key

– Certificate
● Public Key
● ID (domain name)

– List of supported algorithms

● Client
– List of trusted (Root) CAs

– List of supported algorithms

CA f(x) S f
s
()f

c
()

TM

TLS: Handshake Step 1: ClientHello

● Client generates random
number

● Client sends message to
server
– Client’s random number

– Client’s supported algorithms

CA f(x) S f
s
()f

c
()

R
c

TM

TLS: Handshake Step 2: ServerHello

● Server generates random
number

● Server compares algorithms
– Selects appropriate

algorithms

● Server sends message to
client
– Server’s random number

– Selected algorithms

CA f(x) S f
s
()f

c
()

R
c

f(x)f
c
()

R
c

R
S

f
A
()

f
s
()

TM

TLS: Handshake Step 3: Certificate

● Server sends message to
client
– Server’s certificate

● Client validates server
certificate

CA f(x) S f
s
()f

c
()

R
c

f(x)f
c
()

R
c

R
S

f
A
()

f
s
()

R
S

f
A
()

TM

TLS: Handshake Step 6: ServerHelloDone

● Server sends message to
client
– No content

CA f(x) S f
s
()f

c
()

R
c

f(x)f
c
()

R
c

R
S

f
A
()

f
s
()

R
S

f
A
()

S

TM

TLS: Handshake Step 8: ClientKeyExchange

● Client generates pre-master
secret

● Client encrypts PMS with
server’s public key

● Client sends message to
server
– Encrypted PMS

CA f(x) S f
s
()f

c
()

R
c

f(x)f
c
()

R
c

R
S

f
A
()

f
s
()

R
S

f
A
()

PMS enc
PMS

S

TM

TLS: Handshake Step 10: ChangeCipherSpec

● Client creates master secret
– Rc + Rs + PMS

● Cilent switches to encrypted mode
– Algorithm agreed in step 2

– Symmetric encryption with MS

● Client sends message to server
– No content

CA f(x) S f
s
()f

c
()

R
c

f(x)f
c
()

R
c

R
S

f
A
()

f
s
()

R
S

f
A
()

PMS enc
PMS

enc
PMS

S

MS

TM

TLS: Handshake Step 11: Finished

● Client has completed TLS
handshake

● Client sends message to
server
– No content

CA f(x) S f
s
()f

c
()

R
c

f(x)f
c
()

R
c

R
S

f
A
()

f
s
()

R
S

f
A
()

PMS enc
PMS

enc
PMS

MS

S

TM

TLS: Handshake Step 12: ChangeCipherSpec

● Server decrypts PMS

● Server creates master secret
– Rc + Rs + PMS

– Server switches to encrypted
mode

– Algorithm agreed in step 2

– Symmetric encryption with MS

● Server sends message to client
– No content

CA f(x) S f
s
()f

c
()

R
c

f(x)f
c
()

R
c

R
S

f
A
()

f
s
()

R
S

f
A
()

PMS enc
PMS

enc
PMS

MS

PMS MS

S

TM

TLS: Handshake Step 13: Finished

● Server has completed TLS
handshake

● Server sends message to
client
– No content

CA f(x) S f
s
()f

c
()

R
c

f(x)f
c
()

R
c

R
S

f
A
()

f
s
()

R
S

f
A
()

PMS enc
PMS

enc
PMS

MS

PMS MS

S

TM

TLS: Encrypted Communication

● Algorithm agreed in step 2

● Symmetric

● Use Master Secret as key
CA f(x) S f

s
()f

c
()

R
c

f(x)f
c
()

R
c

R
S

f
A
()

f
s
()

R
S

f
A
()

PMS enc
PMS

enc
PMS

MS

PMS MS

S

TM

TLS: Extensions

● Client certificate authentication
– Client authenticates to server with a

certificate

● Server Name Indication
– Client tells server which host is wants to

connect to and server sends
appropriate certificate (virtual hosting)

● Application Layer Protocol Negotiation
– Client and server agree protocol to for

encrypted communication during
handshake

CA f(x) S f
s
()f

c
()

R
c

f(x)f
c
()

R
c

R
S

f
A
()

f
s
()

R
S

f
A
()

PMS enc
PMS

enc
PMS

MS

PMS MS

S

TM

Configuring
Tomcat for TLS

TM

Requirements

● Private key

● Server certificate

● Certificate chain

● Configuration in server.xml

TM

File Formats

● .pem / .crt / .cer / .key
– ASCII

– Key, certificate or chain

● .der
– Binary form of .pem

● .p7b (PKCS7)
– ASCII

– Cert and chain only

● .p12 (PKCS12)
– Binary

– Key, cert or chain

● .jks / .keystore
– Binary

– Java specific

– Key, cert or chain

TM

Which Format Do I Need?

● It depends…

● Tomcat 7 or 8, BIO or NIO
– JSSE implementation, JSSE configuration

– Keystore

– PKCS12 with Java 7+

● Tomcat 7 or 8 APR/native
– OpenSSL implementation, OpenSSL configuration

– PEM

TM

Which Format Do I Need?

● Tomcat 8.5 and 9, NIO and NIO2
– KeyStore, PKCS12 or PEM

– JSSE or OpenSSL for configuration

– JSSE or OpenSSL for implementation

– Can’t mix JSSE and OpenSSL attributes in a single configuration

● Tomcat 8.5 and 9, APR/native
– PEM

– OpenSSL implementation and OpenSSL configuration

TM

Tomcat 7 or 8: BIO or NIO

<Connector

 protocol="org.apache.coyote.http11.Http11NioProtocol"

 port="8443"

 SSLEnabled="true" scheme="https" secure="true"

 sslProtocol="TLS"

 keystoreFile="${catalina.base}/conf/localhost.jks"

 keystorePass="changeit"

 />

TM

Tomcat 7 or 8: APR/native

<Connector

 protocol="org.apache.coyote.http11.Http11AprProtocol"

 port="8443" maxThreads="200"

 SSLEnabled="true" scheme="https" secure="true"

 SSLProtocol="TLSv1+TLSv1.1+TLSv1.2"

 SSLCertificateFile="/usr/local/ssl/server.crt"

 SSLCertificateKeyFile="/usr/local/ssl/server.pem"

 SSLVerifyClient="optional"

 />

TM

Changes in Tomcat 8.5

● Tomcat 7 / Tomcat 8
– 1 Connector, 1 Hostname, 1 certificate

● Tomcat 8.5 / Tomcat 9
– 1 Connector, 1 or more Hostnames

– 1 Hostname, 1 or more certificates (different types)

● Tomcat 8 style configuration is supported but deprecated
– Connector level attributes are equivalent to the default TLS Host

TM

Tomcat 8.5 onwards: NIO or NIO2

<Connector

 protocol="org.apache.coyote.http11.Http11NioProtocol"

 port="8443" maxThreads="150" SSLEnabled="true">

 <SSLHostConfig>

 <Certificate

 certificateKeystoreFile="conf/localhost-rsa.jks"

 type="RSA" />

 </SSLHostConfig>

</Connector>

TM

Tomcat 8.5 onwards: APR/Native

<Connector

 protocol="org.apache.coyote.http11.Http11AprProtocol"

 port="8443" maxThreads="150" SSLEnabled="true">

 <SSLHostConfig>

 <Certificate

 certificateKeystoreFile="conf/localhost-rsa.jks"

 type="RSA" />

 </SSLHostConfig>

</Connector>

TM

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

