
© ARM 2017

64-bit ARM Unikernels on
uKVM

Wei Chen <Wei.Chen@arm.com>

Tokyo / Open Source Summit Japan 2017

Senior Software Engineer

2017-05-31

© ARM 2017 2

Thanks to

 Dan Williams, Martin Lucina, Anil Madhavapeddy and other

Solo5 contributors who give me lots of helps in community.

 Shijie Huang and Dennis Chen who are co-working with me to
implement ARM64 uKVM monitor and bring up guest.

 All my team mates at ARM.

© ARM 2017 3

What are unikernels

For a functional definition of a unikernel, let’s turn to the burgeoning
hub of the unikernel community, Unikernel.org, which defines it as
follows:

Unikernels are specialized, single-address-space machine
images constructed by using library operating systems.

In other words, unikernels are small, fast, secure machine images that lack
distinction between application and operating systems.

© ARM 2017 4

Library operating system

 A special collection of libraries that provides
needed operating system functions in a
compliable format.

 Most unikernels use a specialized compiling
system that compiles the low-level functions
libraries into application directly.

Device I/O Libraries

File System Libraries

TCP/IP Libraries

Other Libraries

…

Librar
y O

per
atin

g Sy
stem

© ARM 2017 5

Unikernels can be designed to run on bare metal
directly. But this architecture has two big drawbacks:

• Without a generic operating system, we have to do
lots of jobs to support running multiple applications
side by side with strong resource isolation on one
bare metal.

• Different bare metals may have different devices. We
have to rewrite device I/O libraries for these devices.
This is a substantial task.

File System Library

I/O Library for Bare
Metal B

Networking Library

Library Routines

Application

Lib
rary O

p
era

tin
g Sy

stem

U
n

ikern
el Im

age

Bare Metal B

File System Library

I/O Library for Bare
Metal A

Networking Library

Library Routines

Application

Lib
rary O

p
era

tin
g Sy

stem

U
n

ikern
el Im

age

Bare Metal A

Unikernels run on bare metal

© ARM 2017 6

Fortunately, modern hypervisors provide virtual machines with:

• Consistent set of virtual devices. So a library operating system just need
to implement only drivers for these virtual devices.

• Strong context isolation. So the isolation between unikernels can be
achieved by using hypervisor.

Unikernels run on hypervisors

File System Library

Virtual Device I/O
Library

Networking Library

Library Routines

Application#1

Lib
rary O

p
era

tin
g Sy

stem

U
n

ikern
el Im

age
#1

Hypervisor

Bare Metal

File System Library

Virtual Device I/O
Library

Networking Library

Library Routines

Application#2

Lib
rary O

p
era

tin
g Sy

stem

U
n

ikern
el Im

age
#2

© ARM 2017 7

Why we need Unikernels?

Traditional workloads are large as they are comprised
of many components. This can lead to a larger attack
surface to exploit as well as a long startup/initialization
times.

A unikernel approach allows one to reduce both the
attack surface and service complexity

© ARM 2017 8

Traditional software stack
In last decade, we have done excellently in transfer
every service into cloud. But the software stacks of
workloads running on the cloud have remained almost
unchanged since the time before cloud.

• Before Our Service Process, we have to startup all
needed software before it.

– Slower initialization.

• Even if it’s a simplest service, we still have to spend
disk and memory for unused software.

–More resources used.

• Big size means big attack surface.

–More opportunities to exploit.

User Space

Kernel

Our Service Process

System Processes

Library Routines

File System Networking

Scheduler Device I/O

Other Kernel Modules

T
ra

d
itio

n
a

l S
o

ftw
a

re
 S

ta
c

k

© ARM 2017 9

Workloads with Virtual Machine

While we move the workloads into the virtual machine to enjoy the
great benefit of context isolation. We still haven’t changed the software
stacks.

© ARM 2017 10

 Every virtual machine image contains separate copies of kernel image, utilities
and significant software.

-- It wastes disk space.

 A virtual machine must boot a separate kernel and normally have a significant
number of processes running to provide services. These processes may have
already launched during the host system startup.

-- It wastes CPU and memory resources.

 While starting up the virtual machine, the boot time is spent starting the kernel
and support processes.

-- This can take a long time for many virtual machines.

• Virtual Machines do not reduce the overall attack surface, instead they do a
very good job of isolating attack surfaces from each other.

© ARM 2017 11

Can container help?

Libraries

Application#1

Container#1

Host Operating System

Bare Metal

Docker Engine (Share host kernel)

Binaries

Shared Libraries

Application#2

Container#2

Shared Binaries

Application#3

Container#3

© ARM 2017 12

 Containers can share operating system kernel, binaries and libraries with their
host system. Eliminating the need for additional copies of them in each
container.

-- Saves disk space.

 Containers can leverage the system processes of their host system. The
duplicated processes are not needed to be launched.

-- Saves memory and CPU resources.

 Relying on the host’s kernel and existing system processes, startup of a
container is extremely quick.

-- Faster startup.

© ARM 2017 13

Security is still an issue

Containers are Smaller and Faster, but Security is still an issue.

In fact, unless we do works to make the container be secure before deployment.
We may find the container is in a more vulnerable situation than when we were
still using a virtual machine to deploy the service. Containers do not provide
context isolation to the same extent as virtual machines. Because they share the
same kernel, one vulnerable container may expose others to attack.

Container can protect the interfaces to the kernel by seccomp. But we have to
know what containers will do. It’s difficult for us to make sure what every
container does, so it would not be a generic solution.

© ARM 2017 14

Are unikernels a better solution?
Unikernel.org lists 4 advantages of unikernels:

 Improved security
Unikernels reduce the amount of code deployed, which reduces the attack surface,

improving security.

 Small footprints

Unikernel images are often orders of magnitude smaller than traditional OS

deployments.

 Highly optimized

The unikernel compilation model enables whole-system optimization across device

drivers and application logic.

 Fast Boot
Unikernels can boot extremely quickly, with boot times measured in milliseconds.

© ARM 2017 15

How can unikernels achieve this?

Compile everything into image:

Most unikernels compile everything needed into an application from library
operating system. The result is that, the output unikernel image contains
everything a program needed to run, from low-level device I/O functions to high-
level logic code.

© ARM 2017 16

Normally, an application only needs a tiny fraction of functions on a generic
operating system. One advantage that unikernels supply is the ability to only
package what is needed. For Example, if we build a web server unikernel, we may
only package:

 Basic architecture initialization functions (timer, console and network).

 TCP/IP stack and HTTP handlers

It requires no generic operating system, no shared libraries, and no system
processes. The image size can be orders of a magnitude smaller than traditional
web server on generic operating system.
-- Small footprints, Reduce the attack surface, improving security.

-- Boots extremely quickly

© ARM 2017 17

Now, we can see the unikernel satisfies our requirement of new type workload
on cloud:

• Fast

• Small

• Secure

But, is it enough? Is there anything we can optimize?

© ARM 2017 18

Using MirageOS for example

 Currently, MirageOS unikernel images can run inside Xen and Linux
KVM/QEMU hypervisors as a guest.

© ARM 2017 19

MirageOS run on generic hypervisors

 By the advantages of unikernels, application with mirage can package only
needed functions into the image. So the application image can be very tiny. The
application’s attack surface has been reduced.

 From previous two samples, we see that two Mirage unikernel images are
running on generic hypervisors.

 But these two Mirage unikernels maybe just need a tiny fraction of hypervisor
interfaces or complex emulations. An unnecessary interface or emulation can be
an additional attack surface.

© ARM 2017 20

VENOM vulnerability

Origin:

A QEMU virtual device emulation that most
virtual machines would not used contains a
bug. –Virtual Floppy Device emulation.

Range:

Both the Xen Project and KVM open source
hypervisors use QEMU, so all these virtual
machines were potentially at risk.

© ARM 2017 21

How can we avoid attacks like VENOM?

 In monitor layer, package what unikernel applications needed to the monitor.
For example, if we want to run a “hello world” unikernel on VM, we could only
package console emulation in to the monitor, without network, block and any
other modules this application doesn’t needed.

 Of course such specialized monitors need to be rigorously audited and security
tested to ensure that they are not introducing their own security problems.

© ARM 2017 22

uKVM is a specialized unikernel monitor

 Customize and compile the unikernel monitor as
application needed.

 Provide a VM with minimal set of hypervisor interfaces
and emulations.

- Reduce the VM footprint can help make

things more secure

- Reduce the VM virtual devices can help

make monitor initialize faster.

© ARM 2017 23

The changes of the software stack:

 Replace QEMU by a specialized monitor for every unikernel.

 Add specialized monitor supports to library operating system low level
functions.

© ARM 2017 24

uKVM on AAach64

 We have started to port uKVM on AArch64 at the beginning of this year.

Currently, we have the following working:

• Setup guest CPU

• Setup guest memory

• Setup guest timer

• Setup guest MMU

https://github.com/Weichen81/ukvm-solo5-arm64

And we are working with upstream to get support merged at:

https://github.com/Solo5/solo5

© ARM 2017 25

 The solo5 project wants to make the solo5 kernel architecture independent
as much as possible. So if the work can be done by solo5 kernel or uKVM,
we prefer to do it on uKVM side.

 For example:

Configure CPU vector table register in uKVM. Normally, this work is done by
the guest kernel while running guest on the generic hypervisors .

© ARM 2017 26

Guest page tables on AArch64

 AArch64 needs to enable MMU for guest to share data for host. Hence the
guest will use virtual address to access memory. But x86 guest use physical
address. We don’t want to make guest on AArch64 be special, so we create page
tables for guest to do 1:1 mapping between virtual address and intermediate
physical address.

Guest virtual address

Guest virtual address

Guest virtual address

Guest physical address

Guest physical address

Guest physical address

Guest virtual address Guest physical address

… …

Guest page tables

1:1 mapping for guest virtual and
physical addresses

© ARM 2017 27

Demo

Hardware Configuration:

• 8 Cortex-A53 2Ghz CPU

• 16 GB memory

• mirage-solo5-ukvm AArch64 Branch:
git checkout –b arm64 https://github.com/Weichen81/ukvm-solo5-arm64

• Testing based commit id:
9d1f576fb41886a7f533375e9d3be7494c3cd7e8

• This tests perform:
 Http server binary size, boot time and memory usage.

 How many http servers can run on this host at the same time.

© ARM 2017 28

Binary size

Unikernel Monitor:

ukvm-bin, 84Kbytes

Unikernel Application:

Conduit_server.ukvm, 5.3Mbytes

© ARM 2017 29

Boot time

Http Server boot time:
• Launch to uKVM main entry: ~1ms

• uKVM main entry to conduit_server print
“SOLO5”: ~50ms

© ARM 2017 30

Memory usage

 Http Server memory usage:
In uKVM configuration, we allocate 16MB
RAM for VM to run http server.

We use “pmap” to capture the runtime
memory of this http server.

© ARM 2017 31

Demo

I have run 256 Conduit Servers on this server at the same time.

© ARM 2017 32

Demo

256 Conduit Servers:

• CPU usage: 100%

© ARM 2017 33

Demo

256 Conduit Servers:

• Memory usage:

© ARM 2017 34

Works still need to be done for AArch64

• Complete the upstream work.

• Add multi-platform supports, currently we only support Linux. If possible, we
want to support other platforms like FreeBSD/MacOS.

• Add the VIRTIO support to increase the I/O performance.

• Verify and improve the compatibility of MirageOS libraries on AArch64.

© ARM 2017 35

Applications that are appropriate for unikernels

• Initialization needs to be quick.

• Application state does not need to be retained, one can express it as a transient
micro-service.

• One wishes to minimize the execution footprint exposed to the internet.

• The application will scale out leading to many instances running in parallel.

© ARM 2017 36

Applications that are not suggested for Unikernels

• Multi-processes applications and could not be modified from inter-processes
communication to inter-machines communication.

• Multi-user applications. Unikernels are fiercely single user. Multiple users require
significant overhead.

• Applications that have lots of functions. Such applications will pull in large
libraries, and will lost the advantages such as small footprint or faster boot time.

© ARM 2017 37

Running unikernels inside the container?

• As we had mentioned before, the share kernel strategy is the weakness of
container security. Benefits by running unikernels inside the container:

• Virtual machine provides context isolation which is more secure than cgroup.

• A shared kernel will not be used any more.

• Breaking up system functionality to modular libraries, applications can package
what they need.

• Multi-platform can use the same application image.

© ARM 2017 38

Summary

http://unikernel.org/

https://mirage.io/

https://www.xenproject.org/

https://www.linux-kvm.org/

https://github.com/Solo5/solo5

© ARM 2017

Questions?

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be
trademarks of their respective owners.

Copyright © 2017 ARM Limited

© ARM 2017

