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What is stream processing

 Real-world data is unbounded and is 

pushed to systems

 Right now: people are using the batch 

paradigm for stream analysis (there was 

no good stream processor available)

 New systems (Flink, Kafka) embrace 

streaming nature of data
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Flink is a stream processor with many faces

Streaming dataflow runtime



Flink's streaming runtime
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Requirements for a stream processor

 Low latency

• Fast results (milliseconds)

 High throughput

• handle large data amounts (millions of events 

per second)

 Exactly-once guarantees

• Correct results, also in failure cases

 Programmability

• Intuitive APIs
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Pipelining
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Basic building block to “keep the data moving”

• Low latency
• Operators push 

data forward
• Data shipping as 

buffers, not tuple-
wise

• Natural handling 
of back-pressure



Fault Tolerance in streaming

 at least once: ensure all operators see all 
events

• Storm: Replay stream in failure case

 Exactly once: Ensure that operators do 
not perform duplicate updates to their 
state

• Flink: Distributed Snapshots

• Spark: Micro-batches on batch runtime
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Flink’s Distributed Snapshots

 Lightweight approach of storing the state 

of all operators without pausing the 

execution

 high throughput, low latency

 Implemented using barriers flowing 

through the topology
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Best of all worlds for streaming

 Low latency
• Thanks to pipelined engine

 Exactly-once guarantees
• Distributed Snapshots

 High throughput
• Controllable checkpointing overhead

 Separates app logic from recovery
• Checkpointing interval is just a config parameter
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Throughput of distributed grep
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Aggregate throughput for stream record 

grouping
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Latency in stream record grouping
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Exactly-Once with YARN Chaos Monkey

 Validate exactly-once guarantees with 

state-machine
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“Faces” of Flink
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Faces of a stream processor
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The Flink Stack
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Streaming dataflow runtime
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Abstractions 
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Core APIs
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Deployment



APIs for stream and batch
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case class Word (word: String, frequency: Int)

val lines: DataStream[String] = env.fromSocketStream(...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}

.window(Time.of(5,SECONDS)).every(Time.of(1,SECONDS))

.groupBy("word").sum("frequency")
.print()

val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}  

.groupBy("word").sum("frequency")

.print()

DataSet API (batch):

DataStream API (streaming):



The Flink Stack
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Streaming dataflow runtime
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Experimental 
Python API also 

available

Data Source
orders.tbl

Filter
Map DataSource

lineitem.tbl

Join
Hybrid Hash

buildHT probe

hash-part [0] hash-part [0]

GroupRed
sort

forward

API independent Dataflow

Graph representation

Batch Optimizer Graph Builder



Batch is a special case of streaming

 Batch: run a bounded stream (data set) on 

a stream processor

 Form a global window over the entire data 

set for join or grouping operations
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Batch-specific optimizations

 Managed memory on- and off-heap

• Operators (join, sort, …) with out-of-core 

support

• Optimized serialization stack for user-types

 Cost-based Optimizer

• Job execution depends on data size
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The Flink Stack
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FlinkML: Machine Learning

 API for ML pipelines inspired by scikit-learn

 Collection of packaged algorithms 
• SVM, Multiple Linear Regression, Optimization, ALS, ... 
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val trainingData: DataSet[LabeledVector] = ...
val testingData: DataSet[Vector] = ...

val scaler = StandardScaler()
val polyFeatures = PolynomialFeatures().setDegree(3)
val mlr = MultipleLinearRegression()

val pipeline = scaler.chainTransformer(polyFeatures).chainPredictor(mlr)

pipeline.fit(trainingData)

val predictions: DataSet[LabeledVector] = pipeline.predict(testingData)



Gelly: Graph Processing

 Graph API and library

 Packaged algorithms
• PageRank, SSSP, Label Propagation, Community 

Detection, Connected Components
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ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

Graph<Long, Long, NullValue> graph = ...

DataSet<Vertex<Long, Long>> verticesWithCommunity = graph.run(
new LabelPropagation<Long>(30)).getVertices();

verticesWithCommunity.print();

env.execute();



Flink Stack += Gelly, ML
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Integration with other systems
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• Use Hadoop Input/Output Formats
• Mapper / Reducer implementations
• Hadoop’s FileSystem implementations

• Run applications implemented against Google’s Data Flow API
on premise with Flink

• Run Cascading jobs on Flink, with almost no code change
• Benefit from Flink’s vastly better performance than 

MapReduce

• Interactive, web-based data exploration

• Machine learning on data streams

• Compatibility layer for running Storm code
• FlinkTopologyBuilder: one line replacement for 

existing jobs
• Wrappers for Storm Spouts and Bolts
• Coming soon: Exactly-once with Storm



Deployment options
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• Start Flink in your IDE / on your machine
• Local debugging / development using the 

same code as on the cluster

• “bare metal” standalone installation of Flink
on a cluster

• Flink on Hadoop YARN (Hadoop 2.2.0+)
• Restarts failed containers
• Support for Kerberos-secured YARN/HDFS 

setups



The full stack
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Closing
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tl;dr Summary

Flink is a software stack of

 Streaming runtime

• low latency

• high throughput

• fault tolerant, exactly-once data processing

 Rich APIs for batch and stream processing

• library ecosystem

• integration with many systems

 A great community of devs and users

 Used in production
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What is currently happening?

 Features in progress:

• Master High Availability

• Vastly improved monitoring GUI

• Watermarks / Event time processing / 

Windowing rework

• Graduate Streaming API out of Beta

 0.10.0-milestone-1 is currently voted

35



How do I get started?
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Mailing Lists: (news | user | dev)@flink.apache.org

Twitter: @ApacheFlink

Blogs: flink.apache.org/blog, data-artisans.com/blog/

IRC channel: irc.freenode.net#flink

Start Flink on YARN in 4 commands:
# get the hadoop2 package from the Flink download page at
# http://flink.apache.org/downloads.html
wget <download url>
tar xvzf flink-0.9.1-bin-hadoop2.tgz
cd flink-0.9.1/
./bin/flink run -m yarn-cluster -yn 4 ./examples/flink-java-
examples-0.9.1-WordCount.jar

http://flink.apache.org/downloads.html


flink.apache.org 37

Flink Forward: 2 days conference with 

free training in Berlin, Germany

• Schedule: http://flink-forward.org/?post_type=day

http://flink-forward.org/?post_type=day


Appendix
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Managed (off-heap) memory and out-of-

core support

39Memory runs out



Cost-based Optimizer
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case class Path (from: Long, to:
Long)
val tc = edges.iterate(10) {

paths: DataSet[Path] =>
val next = paths

.join(edges)

.where("to")

.equalTo("from") {
(path, edge) =>

Path(path.from, edge.to)
}
.union(paths)
.distinct()

next
}
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Iterative processing in Flink

Flink offers built-in iterations and delta 

iterations to execute ML and graph 

algorithms efficiently
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Example: Matrix Factorization
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Factorizing a matrix with
28 billion ratings for
recommendations

More at: http://data-artisans.com/computing-recommendations-with-flink.html
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Streaming 
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