
Architecture of Flink's

Streaming Runtime

Robert Metzger

@rmetzger_

rmetzger@apache.org

What is stream processing

 Real-world data is unbounded and is

pushed to systems

 Right now: people are using the batch

paradigm for stream analysis (there was

no good stream processor available)

 New systems (Flink, Kafka) embrace

streaming nature of data

2

Web server Kafka topic

Stream processing

3

Flink is a stream processor with many faces

Streaming dataflow runtime

Flink's streaming runtime

4

Requirements for a stream processor

 Low latency

• Fast results (milliseconds)

 High throughput

• handle large data amounts (millions of events

per second)

 Exactly-once guarantees

• Correct results, also in failure cases

 Programmability

• Intuitive APIs

5

Pipelining

6

Basic building block to “keep the data moving”

• Low latency
• Operators push

data forward
• Data shipping as

buffers, not tuple-
wise

• Natural handling
of back-pressure

Fault Tolerance in streaming

 at least once: ensure all operators see all
events

• Storm: Replay stream in failure case

 Exactly once: Ensure that operators do
not perform duplicate updates to their
state

• Flink: Distributed Snapshots

• Spark: Micro-batches on batch runtime

7

Flink’s Distributed Snapshots

 Lightweight approach of storing the state

of all operators without pausing the

execution

 high throughput, low latency

 Implemented using barriers flowing

through the topology

8

Kafka

Consumer

offset = 162

Element

Counter

value = 152

Operator
stateData Stream

barrier

Before barrier =
part of the snapshot

After barrier =
Not in snapshot

(backup till next snapshot)

9

10

11

12

Best of all worlds for streaming

 Low latency
• Thanks to pipelined engine

 Exactly-once guarantees
• Distributed Snapshots

 High throughput
• Controllable checkpointing overhead

 Separates app logic from recovery
• Checkpointing interval is just a config parameter

13

Throughput of distributed grep

14

Data
Generator

“grep”
operator

30 machines, 120 cores

0

20.000.000

40.000.000

60.000.000

80.000.000

100.000.000

120.000.000

140.000.000

160.000.000

180.000.000

200.000.000

Flink, no fault
tolerance

Flink, exactly
once (5s)

Storm, no
fault tolerance

Storm, micro-
batches

aggregate throughput
of 175 million
elements per second

aggregate throughput
of 9 million elements
per second

• Flink achieves 20x
higher throughput

• Flink throughput
almost the same
with and without
exactly-once

Aggregate throughput for stream record

grouping

15

0

10.000.000

20.000.000

30.000.000

40.000.000

50.000.000

60.000.000

70.000.000

80.000.000

90.000.000

100.000.000

Flink, no
fault

tolerance

Flink,
exactly

once

Storm, no
fault

tolerance

Storm, at
least once

aggregate throughput
of 83 million elements
per second

8,6 million elements/s

309k elements/s Flink achieves 260x
higher throughput with
fault tolerance

30 machines,
120 cores Network

transfer

Latency in stream record grouping

16

Data
Generator

Receiver:
Throughput /

Latency measure

• Measure time for a record to
travel from source to sink

0,00

5,00

10,00

15,00

20,00

25,00

30,00

Flink, no
fault

tolerance

Flink, exactly
once

Storm, at
least once

Median latency

25 ms

1 ms

0,00

10,00

20,00

30,00

40,00

50,00

60,00

Flink, no
fault

tolerance

Flink,
exactly

once

Storm, at
least
once

99th percentile
latency

50 ms

17

Exactly-Once with YARN Chaos Monkey

 Validate exactly-once guarantees with

state-machine

18

“Faces” of Flink

19

Faces of a stream processor

20

Stream

processing

Batch

processing
Machine Learning at scale

Graph Analysis

Streaming dataflow runtime

The Flink Stack

21

Streaming dataflow runtime

Specialized
Abstractions
/ APIs

Core APIs

Flink Core
Runtime

Deployment

APIs for stream and batch

22

case class Word (word: String, frequency: Int)

val lines: DataStream[String] = env.fromSocketStream(...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}

.window(Time.of(5,SECONDS)).every(Time.of(1,SECONDS))

.groupBy("word").sum("frequency")
.print()

val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}

.groupBy("word").sum("frequency")

.print()

DataSet API (batch):

DataStream API (streaming):

The Flink Stack

23

Streaming dataflow runtime

DataSet (Java/Scala) DataStream (Java/Scala)

Experimental
Python API also

available

Data Source
orders.tbl

Filter
Map DataSource

lineitem.tbl

Join
Hybrid Hash

buildHT probe

hash-part [0] hash-part [0]

GroupRed
sort

forward

API independent Dataflow

Graph representation

Batch Optimizer Graph Builder

Batch is a special case of streaming

 Batch: run a bounded stream (data set) on

a stream processor

 Form a global window over the entire data

set for join or grouping operations

24

Batch-specific optimizations

 Managed memory on- and off-heap

• Operators (join, sort, …) with out-of-core

support

• Optimized serialization stack for user-types

 Cost-based Optimizer

• Job execution depends on data size

25

The Flink Stack

26

Streaming dataflow runtime

Specialized
Abstractions
/ APIs

Core APIs

Flink Core
Runtime

Deployment

DataSet (Java/Scala) DataStream

FlinkML: Machine Learning

 API for ML pipelines inspired by scikit-learn

 Collection of packaged algorithms
• SVM, Multiple Linear Regression, Optimization, ALS, ...

27

val trainingData: DataSet[LabeledVector] = ...
val testingData: DataSet[Vector] = ...

val scaler = StandardScaler()
val polyFeatures = PolynomialFeatures().setDegree(3)
val mlr = MultipleLinearRegression()

val pipeline = scaler.chainTransformer(polyFeatures).chainPredictor(mlr)

pipeline.fit(trainingData)

val predictions: DataSet[LabeledVector] = pipeline.predict(testingData)

Gelly: Graph Processing

 Graph API and library

 Packaged algorithms
• PageRank, SSSP, Label Propagation, Community

Detection, Connected Components

28

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

Graph<Long, Long, NullValue> graph = ...

DataSet<Vertex<Long, Long>> verticesWithCommunity = graph.run(
new LabelPropagation<Long>(30)).getVertices();

verticesWithCommunity.print();

env.execute();

Flink Stack += Gelly, ML

29

G
e
lly

M
L

DataSet (Java/Scala) DataStream

Streaming dataflow runtime

Integration with other systems

30

S
A

M
O

A

DataSet DataStream

H
a

d
o

o
p

M
/R

G
o
o
g
le

 D
a
ta

fl
o
w

C
a
s
c
a
d
in

g

S
to

rm

Z
e
p
p
e
lin

• Use Hadoop Input/Output Formats
• Mapper / Reducer implementations
• Hadoop’s FileSystem implementations

• Run applications implemented against Google’s Data Flow API
on premise with Flink

• Run Cascading jobs on Flink, with almost no code change
• Benefit from Flink’s vastly better performance than

MapReduce

• Interactive, web-based data exploration

• Machine learning on data streams

• Compatibility layer for running Storm code
• FlinkTopologyBuilder: one line replacement for

existing jobs
• Wrappers for Storm Spouts and Bolts
• Coming soon: Exactly-once with Storm

Deployment options

Gelly

Table

ML

SAMOA

D
a

ta
S

e
t
(J

a
v
a

/S
c
a

la
)

D
a

ta
S

tr
e

a
m

Hadoop

L
o

c
a

l
C

lu
s
te

r
Y

A
R

N
T
e

z
E

m
b

e
d

d
e

d

Dataflow

Dataflow

MRQL

Table

Cascading

S
tr

e
a
m

in
g
 d

a
ta

fl
o
w

 r
u
n
ti
m

e

Storm

Zeppelin

• Start Flink in your IDE / on your machine
• Local debugging / development using the

same code as on the cluster

• “bare metal” standalone installation of Flink
on a cluster

• Flink on Hadoop YARN (Hadoop 2.2.0+)
• Restarts failed containers
• Support for Kerberos-secured YARN/HDFS

setups

The full stack

32

G
e
lly

T
a
b
le

M
L

S
A

M
O

A

DataSet (Java/Scala) DataStream

H
a

d
o

o
p

M
/R

Local Cluster Yarn Tez Embedded

D
a
ta

fl
o
w

D
a
ta

fl
o
w

 (
W

iP
)

M
R

Q
L

T
a
b
le

C
a

s
c
a

d
in

g
Streaming dataflow runtime

S
to

rm
 (

W
iP

)

Z
e
p
p
e
lin

Closing

33

tl;dr Summary

Flink is a software stack of

 Streaming runtime

• low latency

• high throughput

• fault tolerant, exactly-once data processing

 Rich APIs for batch and stream processing

• library ecosystem

• integration with many systems

 A great community of devs and users

 Used in production
34

What is currently happening?

 Features in progress:

• Master High Availability

• Vastly improved monitoring GUI

• Watermarks / Event time processing /

Windowing rework

• Graduate Streaming API out of Beta

 0.10.0-milestone-1 is currently voted

35

How do I get started?

36

Mailing Lists: (news | user | dev)@flink.apache.org

Twitter: @ApacheFlink

Blogs: flink.apache.org/blog, data-artisans.com/blog/

IRC channel: irc.freenode.net#flink

Start Flink on YARN in 4 commands:
get the hadoop2 package from the Flink download page at
http://flink.apache.org/downloads.html
wget <download url>
tar xvzf flink-0.9.1-bin-hadoop2.tgz
cd flink-0.9.1/
./bin/flink run -m yarn-cluster -yn 4 ./examples/flink-java-
examples-0.9.1-WordCount.jar

http://flink.apache.org/downloads.html

flink.apache.org 37

Flink Forward: 2 days conference with

free training in Berlin, Germany

• Schedule: http://flink-forward.org/?post_type=day

http://flink-forward.org/?post_type=day

Appendix

38

Managed (off-heap) memory and out-of-

core support

39Memory runs out

Cost-based Optimizer

40

DataSource
orders.tbl

Filter

Map DataSource
lineitem.tbl

Join
Hybrid Hash

buildHT probe

broadcast forward

Combine

GroupRed

sort

DataSource
orders.tbl

Filter

Map DataSource
lineitem.tbl

Join
Hybrid Hash

buildHT probe

hash-part [0] hash-part [0]

hash-part [0,1]

GroupRed

sort

forward
Best plan

depends on

relative sizes

of input files

41

case class Path (from: Long, to:
Long)
val tc = edges.iterate(10) {

paths: DataSet[Path] =>
val next = paths

.join(edges)

.where("to")

.equalTo("from") {
(path, edge) =>

Path(path.from, edge.to)
}
.union(paths)
.distinct()

next
}

Optimizer

Type extraction

stack

Task

scheduling

Dataflow

metadata

Pre-flight (Client)

JobManager
TaskManagers

Data

Source
orders.tbl

Filter

Map
DataSourc

e
lineitem.tbl

Join
Hybrid Hash

build

HT
probe

hash-part [0] hash-part [0]

GroupRed

sort

forward

Program

Dataflow

Graph

deploy

operators

track

intermediate

results

Lo
ca

l
C

lu
st

er
:

YA
R

N
, S

ta
n

d
al

o
n

e

Iterative processing in Flink

Flink offers built-in iterations and delta

iterations to execute ML and graph

algorithms efficiently

42

map

join sum

ID
1

ID
2

ID
3

Example: Matrix Factorization

43

Factorizing a matrix with
28 billion ratings for
recommendations

More at: http://data-artisans.com/computing-recommendations-with-flink.html

44

Batch

aggregation
ExecutionGraph

JobManager

TaskManager 1

TaskManager 2

M1

M2

R
P

1
R

P
2

R1

R2

1

2 3a
3b

4a

4b

5a

5b

"Blocked" result partition

45

Streaming

window

aggregation
ExecutionGraph

JobManager

TaskManager 1

TaskManager 2

M1

M2

R
P

1
R

P
2

R1

R2

1

2 3a
3b

4a

4b

5a

5b

"Pipelined" result partition

