
Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Filesystem Fuzzing with
American Fuzzy Lop

Vegard Nossum <vegard.nossum@oracle.com>
Quentin Casasnovas <quentin.casasnovas@oracle.com>

Oracle Linux and VM Development – Ksplice team
April 21, 2016

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program

What is American Fuzzy Lop (AFL)

Porting AFL to the kernel

Applying AFL to filesystem fuzzing

Questions / Demo

1

2

3

4

2Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Time to first bug

Filesystem Time Type

Btrfs 5s BUG()

Ext4 2h BUG()

F2fs 10s BUG()

Gfs2 8m Double free

Hfs 30s Page Fault

Hfsplus 25s Page Fault

Nilfs2 1m Page Fault

Ntfs 4m Soft lockup

Ocfs2 15s BUG()

Reiserfs 25s BUG()

Xfs 1h45m Soft lockup

3

• Linux 4.3 or newer

• 3 AFL instances on
my laptop

• Don’t believe us?
– Live crash demo

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

What is American Fuzzy Lop?

4

(This is not related)

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

What is American Fuzzy Lop?

• Fuzzing
– Software testing technique (black box)

– Generate malformed input

– Find interesting behaviours

• AFL is unique

– Genetic fuzzer: uses branch instrumentation

– Amazingly good to find deep/unusual paths

– Found hundreds of security vulnerabilities

• Open source, developed by Michal Zalewski (lcamtuf)
http://lcamtuf.coredump.cx/afl/

5Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

What is American Fuzzy Lop?
The power of coverage based fuzzing

6

while true; do ./lottery < /dev/urandom && break ; done

/* lottery.c */

int main(void)

{

if (getchar() != 0x42 || getchar() != ‘K’ || getchar() != ‘s’ ||

getchar() != ‘p’ || getchar() != ‘l’ || getchar() != ‘i’ ||

getchar() != ‘c’ || getchar() != ‘e’ || getchar() != ‘\n’)

return 1;

return win_lottery();

}

• One chance / 2 BITS_PER_BYTE * 9 = 4722366482869645213696 to win the lottery…

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

What is American Fuzzy Lop?
The power of coverage based fuzzing

7

• Instrument branches

• Use coverage as feedback loop
– Keep inputs that generates new paths

–Mutate those inputs

• Win the lottery in at most
(1 << BITS_PER_BYTE) * 9 = 2034 iterations

• Think of very complex parsers with hundred of branches

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

What is American Fuzzy Lop?
The feedback loop

8

• Shared memory between afl-fuzz and target

• Branch edge increments a byte in the shm

• Allows to differentiate A > B from B > A

/* afl-fuzz.c */

while (1) {

run_target(input);

cov = gather_coverage(shared_mem);

input = mutate_input(cov)

memzero(shared_mem);

}

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Porting AFL to the kernel

9Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Porting AFL to the kernel
Instrumenting the branches, how?

10

• AFL in userland
– GNU as wrapper
• search conditonal jmp instructions

• instrument each edge with some AFL stub:

– embeds a fork server

– configures shared memory

– writes branch taken into shared memory

/* AFL 101 */

$ CC=afl-gcc ./configure

$ make lottery

$ afl-fuzz -i [input_dir] -o [output_dir] -- ./lottery @@

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Porting AFL to the kernel
Instrumenting the branches, how?

11

• First approach
– Take the GNU as wrapper approach
• Remove userland AFL stub

• Add a call to C function at every edge

• Implement the C function in the kernel

• Works with any GCC version

– Not ideal:
• Need to use afl-as for every compilation unit

• Save all callee clobbered registers

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Porting AFL to the kernel
Instrumenting the branches, how?

12

• Second approach
– Use a GCC plugin
• Dmitry Vyukov wrote a GCC patch for syzkaller [1]

• Port the patch to its own plugin

– No need to recompile GCC :)

– Dmitry’s plugin
• Run at GIMPLE level after all generic optimizations

• Call a function (our stub) at each “Basic Block”

• GCC knows register allocations :)

[1] https://github.com/google/syzkaller

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Porting AFL to the kernel
Instrumenting the branches, visual example

13

/* example.c */

void foo(int x) {

if (x)

do_stuff(x);

else

do_other_stuff(x);

}

/* example.c */

void foo(int x) {

__afl_stub();

if (x) {

__afl_stub();

do_stuff(x);

}

else {

__afl_stub();

do_other_stuff(x);

}

__afl_stub();

}

instrument

• __afl_stub() uses RET_IP as an index to the shared memory

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Porting AFL to the kernel
Shared memory, how?

14

• Need for shared memory between afl-fuzz/kernel
– per task

• /dev/afl driver

/* afl-fuzz.c – USERSPACE */

int afl_fd = open(“/dev/afl”);

shared_mem = mmap(afl_fd);

while (1) {

...

}

/* drivers/afl.c – Kernel */

int afl_mmap(...) {

current->afl_shm = vmalloc();

/* Magic here to map afl_shm

* in the userspace mm */

}

void __afl_stub() {

current->afl_shm[RET_IP]++;

}

Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Porting AFL to the kernel
Shared memory, visual

15Public information

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Applying AFL to filesystem fuzzing

Public information 16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Filesystem fuzzing: Overview

• Writing a filesystem-specific fuzzer

• Starting a fuzzer instance

• Challenges:
– Dealing with large filesystem images

– Dealing with filesystem checksums

– Virtualisation overhead

– Execution indeterminism

• Next steps/where to go from here

Public information 17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

• A list of sources/source directories to instrument
• e.g. fs/ext4/

• A list of config options to enable/disable
• e.g. CONFIG_EXT4_FS=y

• The stub itself
• set up loopback device/mount point/etc.

• expand sparse image to real image

• call mount()

• filesystem activity

• A set of initial filesystem images

Public information 18

Writing a filesystem-specific fuzzer: ingredients

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

• Edit top-level config.yml:
– Point it to afl.git, linux.git, and the

branches to use

– (Optionally) point it to a specific gcc
binary to use

• Building AFL+kernel+fuzzer and
running:
./start ext4 0

• That’s it.

Public information 19

Starting a fuzzer instance – it’s easy!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

– AFL works best with small images
(smaller is better), 1 MiB max

–Many filesystems have minimum size
requirements

– Idea: Only fuzz the “important” bits:
• All-zero areas are excluded from the fuzzing

process as they most likely represent
empty/unused space

• AFL only works with sparse filesystem images

• Kernel only works with full filesystem images

Kernel

full filesystem image

Filesystem-specific fuzzer (wrapper)

decompress

AFL

sparse filesystem image

Public information 20

Challenge: Large filesystem images

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Challenge: Large filesystem images

– Remember: we start with an initial set of filesystem images

– Split input file in chunks (e.g. of 64 bytes)

– Idea 1: Only include chunks which are non-zero
• We often have long runs of non-zero chunks; combine

– Idea 2: Detect frequently repeating chunks

– Tool to “compress” and “decompress” filesystem images

– Some filesystems (e.g. GFS2) write out many non-repeating structures
• Maybe block numbers or other bookkeeping

• Needs filesystem-specific code to compress to reasonably small test-cases

Public information 21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Challenge: filesystem checksums

– Large obstacles for the fuzzer to get past

– Serve no purpose on a known-corrupt filesystem

– Solution 1:
• comment out the filesystem code in the kernel

• your test-cases no longer reproduce on a stock kernel

• possibility of introducing a bug of your own in the kernel

– Solution 2 (preferred):
• calculate correct checksums before passing image to kernel

• can require a lot of effort depending on filesystem

• slightly slower, but hardly noticeable

Public information 22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Challenge: Virtualisation overhead (enter UML)

• Problem: KVM was really slow (~30 execs/sec)

• Solution: Compile the kernel as a regular userspace program (UML)

• To compile:
make ARCH=um

• To run:
./vmlinux rootfstype=hostfs rw init=/bin/bash

• SMP=n; PREEMPT=n lowers overhead and increases determinism

• Result: 60x speedup

• More info: http://user-mode-linux.sourceforge.net/

Public information 23

http://user-mode-linux.sourceforge.net/

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Challenge: execution indeterminism

– Goal: each execution should be deterministic and independent

– Asynchronous code/interrupts

• Interrupts clobber the instrumentation feedback buffer

• Solution: disable instrumentation in interrupts

– printk() ratelimiting

• causes changes to persistent state that affect later testcases

• Solution: either always filter or always allow message through

–Work offloading to kthreads (e.g. async/workqueues)

– Disabling SMP and preemption helps!

Public information 24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Next steps: Regression suites

– Running AFL results in a set of filesystem images

– These images trigger distinct code paths in the kernel

– Idea: We can use the images as a regression suite

– For every new commit, run all the tests

• If you are a filesystem developer, we challenge you to:

– Keep track of all the images found by AFL in a git repo

– Use these images as part of automated regression testing

– Use these images to generate coverage reports for your filesystem

• Much of the work has already been done!

Public information 25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

– Start a kernel with gcov support

– Run all testcases sequentially

– Format output (here: Jenkins)

– Surface analysis shows a lot of error
conditions (e.g. out of memory) are not
covered by AFL

–We can use coverage information to
nudge the fuzzer in the right direction
• e.g.: xattr code was never run, we need to

read/write xattrs on the mounted fs

Public information 26

Example: btrfs coverage report

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Next steps: Finding concurrency issues

• AFL fundamentally relies on testcase determinism
• The same testcase always results in the same code paths taken

• Syzkaller is better suited for finding concurrency issues

• What about finding bugs due to race conditions?
– For each filesystem image found by AFL, mount and run a parallel test suite
• e.g. syzkaller or trinity

– Results will be less precise and indeterministic

• Conjecture: If a particular filesystem image causes different paths to be
taken for sequential operations, it will also cause different paths to be
taken for parallel operations

Public information 27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Questions / Demo

Public information 28

