Filesystem Fuzzing with
American Fuzzy Lop

Vegard Nossum <vegard.nossum@oracle.com>
Quentin Casasnovas <quentin.casasnovas@oracle.com>

Oracle Linux and VM Development — Ksplice team
April 21, 2016

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

Program

P What is American Fuzzy Lop (AFL)
P Porting AFL to the kernel
P Applying AFL to filesystem fuzzing

P Questions / Demo

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

Time to first bug

Filesystem Time Type * Linux 4.3 or newer
E)t(:f ; 328 * 3 AFL instances on
F2fs 10s BUG() my laptop

Gfs2 8m Double free * Don’t believe us?
Hfs 30s Page Fault — Live crash demo
Hfsplus 25s Page Fault

Nilfs2 1m Page Fault

Ntfs 4m Soft lockup

Ocfs2 15s BUG()

Reiserfs 25s BUG()

Xfs 1h45m Soft lockup

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

What is American Fuzzy Lop?

(This is not related)

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

What is American Fuzzy Lop?

* Fuzzing
— Software testing technique (black box)
— Generate malformed input
— Find interesting behaviours

* AFL is unique
— Genetic fuzzer: uses branch instrumentation

— Amazingly good to find deep/unusual paths
— Found hundreds of security vulnerabilities

* Open source, developed by Michal Zalewski (lcamtuf)
http://lcamtuf.coredump.cx/afl/

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

What is American Fuzzy Lop?

The power of coverage based fuzzing

while true; do ./lottery < /dev/urandom && break ; done

/* lottery.c */
int main (void)

{

1if (getchar () !'= 0x42 || getchar() != ‘K’ || getchar ()
getchar () !'= ‘p’ | | getchar() != ‘1’ || getchar()
getchar () != 1‘c’ | | getchar () != ‘e’ || getchar|()

return 1;

return win lottery();

=

\SI ||
\il ||

\\nl)

ORACLE’

One chance / 2 BITS_PER_BYTE® 9 = 4722366482869645213696 to win the lottery...

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

What is American Fuzzy Lop?

The power of coverage based fuzzing

* Instrument branches

* Use coverage as feedback loop
— Keep inputs that generates new paths
— Mutate those inputs

* Win the lottery in at most
(1 << BITS_PER_BYTE) *9=2034 iterations

* Think of very complex parsers with hundred of branches

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

What is American Fuzzy Lop?

The feedback loop
* Shared memory between afl-fuzz and target
* Branch edge increments a byte in the shm

* Allows to differentiate A>B from B > A

/* afl-fuzz.c */
while (1) {
run_target (input) ;
cov = gather coverage (shared mem) ;
input = mutate input (cov)
memzero (shared mem) ;

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

Porting AFL to the kernel

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

Porting AFL to the kernel

Instrumenting the branches, how?

* AFL in userland
— GNU as wrapper

* search conditonal jmp instructions N

* instrument each edge with some AFL stub:
— embeds a fork server

— configures shared memory
— writes branch taken into shared memory

/* AFL 101 */
S CC=afl-gcc ./configure
S make lottery

$ afl-fuzz -i [input dir] -o [output dir] -- ./lottery @@

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

Porting AFL to the kernel

Instrumenting the branches, how?

* First approach
— Take the GNU as wrapper approach

* Remove userland AFL stub
* Add a call to C function at every edge

* Implement the C function in the kernel
* Works with any GCC version

— Not ideal:

* Need to use afl-as for every compilation unit
* Save all callee clobbered registers

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information 11

Porting AFL to the kernel

Instrumenting the branches, how?

* Second approach

— Use a GCC plugin
* Dmitry Vyukov wrote a GCC patch for syzkaller [1]

* Port the patch to its own plugin
— No need to recompile GCC :)

— Dmitry’s plugin
* Run at GIMPLE level after all generic optimizations
* Call a function (our stub) at each “Basic Block”
* GCC knows register allocations :)

[1] https://github.com/google/syzkaller

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information 12

Porting AFL to the kernel

Instrumenting the branches, visual example

/* example.c */
void foo (int x) {

/* example.c */
void foo(int x) {
__afl stub();
if (x) |
__afl stub();

1f (%) do stuff (x);
do_stuff (x); instrument }
else else {
do other stuff (x); afl stub();
J do other stuff (x);
}
__afl stub();
}
« _ afl_stub() uses RET _IP as an index to the shared memory

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

13

Porting AFL to the kernel

Shared memory, how?

* Need for shared memory between afl-fuzz/kernel

— per task
. /* drivers/afl.c - Kernel *
¢ /deV/afl drlver int afl mmap(...) { /

current->afl shm = vmalloc();
/* Magic here to map afl shm

/* afl-fuzz.c - USERSPACE */ * in the userspace mm */

int afl fd = open (“/dev/afl”); }

shared mem = mmap (afl fd);

while (1) { void afl stub() {

— current->afl shm[RET IP]++;
} }

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

ORACLE

Porting AFL to the kernel

Shared memory, visual

Kernel Space RAM

\ - ™
|struct task_struct struct task_struct struct task_struct

j p afl_shared_mem
L :
L — !
] J
afl_shared mem —&fl shared mem —————— |

. 4 o /
A A A
/ Usrr Lan \
aflfuz aflfuz apache / afl_shared_mem
L— .

o

afl_shared_mem afl_shared_mem /

N . b A N by

- /

: ‘ Cl-e Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

Applying AFL to filesystem fuzzing

ORACLE

Filesystem fuzzing: Overview

* Writing a filesystem-specific fuzzer
* Starting a fuzzer instance

* Challenges:
— Dealing with large filesystem images
— Dealing with filesystem checksums
— Virtualisation overhead
— Execution indeterminism

* Next steps/where to go from here

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

17

Writing a filesystem-specific fuzzer: ingredients

* A list of sources/source directories to instrument
ceg. fs/extd/

* A list of config options to enable/disable
* e.8. CONFIG EXT4 FS=y

* The stub itself

* set up loopback device/mount point/etc.
* expand sparse image to real image

* callmount ()

* filesystem activity

* A set of initial filesystem images

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

18

Starting a fuzzer instance — it’s easy!

Edit top-level config.yml:
american fuezy lop 1,%4h {extd_0)- overall r

Point it to afl.git, linux.git, and the rocess tintrg ek
branches to use ciming .

(Optionally) point it to a specific gcc

cycle progress

binary to use % i

ztage progress findings in dep@h_

B

I Lel

Building AFL+kernel+fuzzer and
r U Nnn i N g . fuzzing :z:t.r'-at;ai 1 ::-': IIF';;'I}I”'IE:';EIT'JIE;'_'J

e 13 2

77
-

./start extd 0 A e v 3
That’s it.

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

19

Challenge: Large filesystem images

— AFL works best with small images

(smaller is better), 1 MiB max AFL

: . . sparse filesystem image
— Many filesystems have minimum size P Y &

requirements
— Idea: Only fuzz the “important” bits:

* All-zero areas are excluded from the fuzzing Filesystem-specific fuzzer (wrapper)

process as they most likely represent

decompress
empty/unused space

* AFL only works with sparse filesystem images

* Kernel only works with full filesystem images

Kernel

full filesystem image

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

20

Challenge: Large filesystem images

— Remember: we start with an initial set of filesystem images
— Split input file in chunks (e.g. of 64 bytes)

—ldea 1: Only include chunks which are non-zero
* We often have long runs of non-zero chunks; combine

— Idea 2: Detect frequently repeating chunks
— Tool to “compress” and “decompress” filesystem images

— Some filesystems (e.g. GFS2) write out many non-repeating structures
* Maybe block numbers or other bookkeeping
* Needs filesystem-specific code to compress to reasonably small test-cases

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information 21

Challenge: filesystem checksums

— Large obstacles for the fuzzer to get past
— Serve no purpose on a known-corrupt filesystem

— Solution 1:
* comment out the filesystem code in the kernel
* your test-cases no longer reproduce on a stock kernel ®
* possibility of introducing a bug of your own in the kernel

— Solution 2 (preferred):
* calculate correct checksums before passing image to kernel

* can require a lot of effort depending on filesystem
* slightly slower, but hardly noticeable

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

22

Challenge: Virtualisation overhead (enter UML)

* Problem: KVM was really slow (~30 execs/sec)
* Solution: Compile the kernel as a regular userspace program (UML)

* To compile:
make ARCH=um

* To run:

./vmlinux rootfstype=hostfs rw init=/bin/bash

* SMP=n; PREEMPT=n lowers overhead and increases determinism
* Result: 60x speedup

* More info: http://user-mode-linux.sourceforge.net/

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

23

http://user-mode-linux.sourceforge.net/

Challenge: execution indeterminism

— Goal: each execution should be deterministic and independent

— Asynchronous code/interrupts
* Interrupts clobber the instrumentation feedback buffer
* Solution: disable instrumentation in interrupts
—printk () ratelimiting
* causes changes to persistent state that affect later testcases
 Solution: either always filter or always allow message through

— Work offloading to kthreads (e.g. async/workqueues)
— Disabling SMP and preemption helps!

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

24

Next steps: Regression suites

— Running AFL results in a set of filesystem images

— These images trigger distinct code paths in the kernel
— ldea: We can use the images as a regression suite

— For every new commit, run all the tests

* If you are a filesystem developer, we challenge you to:
— Keep track of all the images found by AFL in a git repo
— Use these images as part of automated regression testing
— Use these images to generate coverage reports for your filesystem

* Much of the work has already been done!

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

25

Example: btrfs coverage report

1838 l|int btrfs delayed update inode({struct btrfs trans_handle *trans,
1839 struct btrfs_root *root, struct inode *inode)
1846 1

1841 struct btrfs delayed node *delayed node;

1842 int ret = 8;

1843

1844 1 delayed node = btrfs get or create delayed node{inode);

1845 1 if (I5_ERR{delayed node))

1846] return PTR_ERR(delayed node);

1847

1348 1 mutex locki{&delayed node-=mutex);

1849 1 if (test bit(BTRFS DELAYED NODE INODE DIRTY, &delayed node-=flags)) {
1858] fill stack _inode item(trans, &delayed node-=inode item, inode):
1851] goto release_node;

1852 }

1853

1854 1 ret = btrfs delayed inode reserve metadata(trans, root, inode,
1855 delayed_node);

1856 1 if (ret)

1857 goto release node;

1858

1859 1 fill stack inode item{trans, &delayed node-=inode item, inode):
1866 1 set_bit{BTRFS DELAYED NODE INODE DIRTY, &delayed node-=flags);
1861 1 delayed node-=count++;

1862 1 atomic_inc{&root-=fs_info->delayed root-=items):

1863 release node:

1864 1 mutex unlock(&delayed node-=mutex);

1865 btrfs_release delayed node{delayed node);

1866 1 return ret;

1867 }

ORACLE

— Start a kernel with gcov support
— Run all testcases sequentially
— Format output (here: Jenkins)

— Surface analysis shows a lot of error
conditions (e.g. out of memory) are not
covered by AFL

— We can use coverage information to
nudge the fuzzer in the right direction

* e.g.: xattr code was never run, we need to
read/write xattrs on the mounted fs

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information 26

Next steps: Finding concurrency issues

* AFL fundamentally relies on testcase determinism

* The same testcase always results in the same code paths taken
 Syzkaller is better suited for finding concurrency issues

* What about finding bugs due to race conditions?

— For each filesystem image found by AFL, mount and run a parallel test suite
* e.g. syzkaller or trinity

— Results will be less precise and indeterministic

* Conjecture: If a particular filesystem image causes different paths to be
taken for sequential operations, it will also cause different paths to be

taken for parallel operations

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

27

Questions / Demo

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | Public information

28

