
apache brooklyn

What it is and why you
might use it

Richard Downer
richard@apache.org

Presented at ApacheCon Europe 2014

Hello to those watching from home. The speaker’s notes on most slides will provide more information about what is being discussed.
Some of the content is in the form of demonstrations; the slides contain links to the recordings which you can watch online.

apache brooklyn

A brief history of Brooklyn

• Brooklyn was started by Cloudsoft (my employer)

• Open sourced in April 2012 (Apache 2 license)

• Joined the Apache Incubator in May 2014

apache brooklyn

The only slide about
the company

• Cloudsoft use Apache Brooklyn was the base for  
AMP: Application Management Platform

• Provide commercial support and special integrations
for Brooklyn

• Brooklyn is not “open core”: Cloudsoft is committed to a
comprehensive and expanding Apache Brooklyn
feature list and codebase

…but we won’t talk about Cloudsoft any more

apache brooklyn

The problem with Brooklyn:

How to
describe it
in one
sentence

The main thing I struggle with in Brooklyn - how to describe it in one sentence - the so-called “elevator pitch”. It’s not easy to come up
with a summary which describes Brooklyn accurately, concisely, and in a way which captures Brooklyn’s unique advantages.

So how do others describe Brooklyn? Let’s take a look…

apache brooklyn

Application modelling,  
monitoring and management

Here we see some attempts to describe Brooklyn succinctly.

apache brooklyn

BLUEPRINT FOR SUCCESS!
Model, monitor and manage your applications

with policy-based automation

Blueprints are apparently something important!

apache brooklyn

These taglines

• Are accurate

• Are short (mostly)

• Fail to provide any useful insight into
what Brooklyn actually does

apache brooklyn

Let’s describe by example

• A simple web application:

• JBoss web app container

• MySQL database

JBoss

MySQL

Let’s say that we are the developers for a moderately complex web application. It needs a Java web application container for the front
end, and a MySQL database for the backend.

apache brooklyn

In development…
• You could set up your JBoss and MySQL:

• Run them on localhost

• Use Vagrant to start to two virtual machines

• Provision a couple of cloud instances

• JBoss needs to locate MySQL

• Easy enough to configure this by hand

apache brooklyn

But what about 
QA and production?

• A single web server and a single
database is not a production
grade configuration!

• It’s not scalable: it can’t handle
heavy load

• It’s not resilient: it can’t handle
failures

• So we add multiple JBosses

• …and a load balancer

• …and a MySQL standby node

JBoss

MySQL

JBoss JBoss

Load
Balancer

MySQL
Hot Standby

So this is a lot of things to be wired up!

1. Everything needs a server to run on, and something needs to set up that server and install the software

2. MySQL needs to know about the hot standby

3. Each JBoss needs to know about the location of and credentials for MySQL

4. The load balancer needs to know about the location of every JBoss

apache brooklyn

But wait, there’s still more
• This is just for a simple application of a web server and

a database!

• What about something with:

• Multiple tiers and services

• Connected by a message queue

• With multiple types of database backend -  
SQL and NoSQL

apache brooklyn

More complexity

JBoss

MySQL

JBoss JBoss

Load
Balancer

MySQL
Hot Standby

Service B

NoSQL store
shard

Service A

NoSQL store
shard

NoSQL store
shard

Message
Broker

apache brooklyn

The first problem
• How do you deploy an app with multiple components?

• How do you get the servers to deploy onto?

• How do you get the software onto servers?

• How do you configure the software pieces to talk to each
other?

• How do you make this process fast, easy and automatable?

With apache brooklyn, of course!

apache brooklyn

The First Pillar of Brooklyn
Deployment and wiring

apache brooklyn

Obligatory page full of logos

So far we’ve used JBoss and MySQL as an example - but there are many more applications that Brooklyn supports out-of-the-box. And
many of these can have complex deployment topologies, which Brooklyn is able to support - such as sharded databases, or databases
whose resilience and sharding depend on a knowledge of the data centre arrangements.

apache brooklyn

Blueprints:
how to deploy with Brooklyn

• Describe your application to Brooklyn -  
make a blueprint

• Describe the components you are using

• Describe how they must be configured

• Describe how they relate to each other

• Describe where they are to be deployed

apache brooklyn

Blueprint for our  
simple example

name: My Web Application
location: AWS_eu-west-1
services:

- serviceType: brooklyn.entity.database.mysql.MySqlNode
 id: db
 name: My DB
 brooklyn.config:
 creationScriptUrl: https://bit.ly/brooklyn-visitors-creation-script

- serviceType: brooklyn.entity.webapp.jboss.JBoss7Server
 name: My Web
 brooklyn.config:
 wars.root: http://bit.ly/brooklyn-example-helloworld-war
 java.sysprops:
 brooklyn.example.db.url: >
 $brooklyn:formatString("jdbc:%s%s?user=%s\\&password=%s",
 component("db").attributeWhenReady("datastore.url"),
 "visitors", "brooklyn", "br00k11n")

1. This is what a blueprint looks like - it’s a document written in YAML.

2.The blueprint has a name…

3.…and a location. This example is deploying to a location which represents Amazon AWS EC2, region eu-west-1

4.Next is a list of services. The first service is the database.

5.The service type is a Java class (often, but not always) - this class knows all about the software!

6.It has an ID (optional) and a name.

7.It also has configuration. This particular configuration references a SQL “creation” script. The MySQL entity class will read this resource

and run it as SQL on the database.

8.Next we define the web server. It has similar arrangements

9.The example db url is special - it calls a function, which references the database by ID, and does something called “attribute when

ready”?

10.To understand “attribute when ready”, it’s best to see this in action.

apache brooklyn

A demonstration  
of deployment

Watching at home? Go to:  
http://youtu.be/0iJ18tlaOQk

apache brooklyn

Anatomy of an application

Application

Entity

Here we’ll describe some of the parts of the Brooklyn web console. In technical terms, Brooklyn is controlled by a REST API, and this is a
Javascript GUI that interacts with the REST API. So anything that can be done in the UI, can also be done by another tool interacting
directly with the API, making Brooklyn a very powerful, scriptable component part of a larger system, if required.

We can see here the “tree” structure that has an application as its root and entities as branches and leaves - although this particular
example only has a single level of entities. (We’ll see a deeper example later on.)

apache brooklyn

Anatomy of an entity

The summary tab shows key information about the entity or application. For a web server, the URL is “promoted” to the summary page
so it is easily accessible.

apache brooklyn

Anatomy of an entity

By expanding the “Config” pane, we can see some of the configuration that the entity has.

apache brooklyn

Anatomy of an entity

The “Sensors” tab shows detailed information about the entity. A sensor is something that the entity measures and then publishes. Here
we can see some static information about the server, but if we scroll down…

apache brooklyn

Anatomy of an entity

…we can also see some dynamic sensors returning metrics about the entity, such as the number of requests and the amount of data
moved. These are updated frequently!

apache brooklyn

Anatomy of an entity

Effectors are something that causes the entity to change in some way. “Stop” and “start” are the most obvious effectors, and these are
supported by almost all entities. The web server entities also have a “deploy” effector, which allows another web application to be loaded
onto the server.

We’ll skip the policies tab for now - more on that later.

apache brooklyn

Anatomy of an entity

Activity, as you saw in the demo video, shows what tasks each entity is performing. Effector calls result in a task; and tasks can be split
into sub-tasks. The activity view allows you to explore this hierarchy and find out the details about the success or failure of each task.

apache brooklyn

Make it a load-balanced
web cluster

name: My Web Application
location: AWS_eu-west-1
services:

- serviceType: brooklyn.entity.database.mysql.MySqlNode
 id: db
 name: My DB
 brooklyn.config:
 creationScriptUrl: https://bit.ly/brooklyn-visitors-creation-script

- serviceType: brooklyn.entity.webapp.jboss.JBoss7Server
 name: My Web
 brooklyn.config:
 wars.root: http://bit.ly/brooklyn-example-helloworld-war
 java.sysprops:
 brooklyn.example.db.url: >
 $brooklyn:formatString("jdbc:%s%s?user=%s\\&password=%s",
 component("db").attributeWhenReady("datastore.url"),
 "visitors", "brooklyn", "br00k11n")

brooklyn.entity.webapp.ControlledDynamicWebAppCluster

So we’ve demonstrated a single-web-server topology. What if we wanted to make this a cluster of web servers with a load balancer? It’s
incredibly easy - just a single change is required. The JBoss7Server class, and the ControlledDynamicWebAppCluster class both support
the same interface - so by changing this one thing, we get the advanced behaviour we need.

apache brooklyn

Make it a load-balanced
web cluster

So in this view we can see that the JBoss entity has been replaced by several more. There is a Cluster of JBoss7Server, which is where
our cluster now lives. Because this is a “dynamic” cluster, it’s size can be changed, and there are effectors available which can do this. A
“controller” cluster means that there is a controller which provides a front-end to the cluster; in this case it’s NGiNX which is acting as a
load balancer. NGiNX is automatically configured with the details of the servers inside the cluster. And if the contents of the cluster
change, NGiNX is reconfigured.

apache brooklyn

Locations
• Fully “cloud aware” using  

Apache jclouds

• Amazon EC2, CloudStack, OpenStack, SoftLayer, Google GCE, …

• Provisions instances on demand, installs and
customises; de-provisions when no longer required

• Or use “BYON” - bring your own nodes

• Or, for testing, deploy to localhost

Locations are one of the most important concepts in Brooklyn. Right from the beginning it was designed to be cloud-aware, and cloud-
agnostic, and as a result it’s naturally suited to deploying to many different cloud providers. Our way of doing this is with Apache jclouds,
which is a Java multi-cloud toolkit - it is Brooklyn’s single most important dependency!

With jclouds, your application can deploy to Amazon AWS, as demonstrated, and also CloudStack, OpenStack, SoftLayer, Google
Compute Engine, and more.

Cloud instances are provisioned when needed, software installed and then customised. When the entity is no longer needed, it is
automatically deprovisioned.

If you have your own “metal” which you prefer to use, then Brooklyn can be configured with a BYON provider - “bring your own nodes”.
Or, for testing your application, you can simply choose to use localhost.

apache brooklyn

Locations
• Multiple locations

• Multi-geography deployments reduce latency to
International users

• “Fabrics” replicate an application topology into different
regions

• Geography-aware DNS routes visitors to closest server
• Availability zone awareness

• Clusters can distribute their members across
availability zones

And Brooklyn is not limited to deploying a blueprint in a single location - multiple locations can be used! A fabric will replicate a topology
in different locations; this could then be tied to a geography-aware DNS which routes users to the location nearest to them.

It also allows for resilience, allowing you to have working services in different data centres, even with different cloud providers if you
choose. Some entities have a deeper level of knowledge, such as clusters which are availability-zone-aware and distribute their members
in different zones, and support for Cassandra “snitches” which introduce a degree of availability-zone-awareness to Cassandra for
maximum effectiveness.

apache brooklyn

The Second Pillar of Brooklyn

Deployment and wiring Runtime management

apache brooklyn

What is  
runtime management?

• Deployment is merely the opening move in the game

• Runtime management is…

• Instructions to change the deployed application

• Monitor the health of all the components and react to
failures

• Monitor the load on the components and react to
rising and falling demand

• Optimise for cost, responsiveness, and more

apache brooklyn

Policies

• Something that will make changes to the application
without requiring operator intervention

• Policies are attached to an entity

• Monitor the entity’s sensor data and other information

• Makes changes to the application by invoking effectors
on the entity

apache brooklyn

Demonstration and
descriptions of some policies

Watching at home? Go to:  
http://youtu.be/-WdbiDpZ8-g

apache brooklyn

Blueprint for a policy
 brooklyn.policies:
 - type: brooklyn.policy.ha.ServiceReplacer
 - type: brooklyn.policy.autoscaling.AutoScalerPolicy
 brooklyn.config:
 metric: $brooklyn:sensor("brooklyn.entity.webapp.ControlledDynamicWebAppCluster",
"webapp.reqs.perSec.windowed")
 metricLowerBound: 10
 metricLowerBound: 100
 minPoolSize: 2
 maxPoolSize: 5
 dynamiccluster.zone.enable: true
 dynamiccluster.numAvailabilityZones: 2
 memberSpec:
 $brooklyn:entitySpec:
 type: brooklyn.entity.webapp.jboss.JBoss7Server
 brooklyn.enrichers:
 - type: brooklyn.policy.ha.ServiceFailureDetector
 brooklyn.policies:
 - type: brooklyn.policy.ha.ServiceRestarter
 brooklyn.config:
 failOnRecurringFailuresInThisDuration: 30 minutes

This fragment of YAML should be appended directly onto the end of the blueprint we used earlier (but note that it has a two-space indent
as it is part of the My Web entity!)

Here we add two policies to the cluster - a service replacer, and an autoscaler. The autoscaler is connected to a sensor, and the
configuration defines the thresholds and limits that the policy will operate to. We also enable options to make the cluster availability zone
aware.

Member spec defines details about the entities that are used to fill the cluster - JBoss7 servers in this case. We are adding to each JBoss
7 entity an enricher called ServiceFailureDetector. An enricher is something that processes sensor data and publishes another sensors; in
this case, it is monitoring key JBoss7 entity sensors and publishing a new sensor which simply says if the entity is healthy or failed.
Finally, we also add to the JBoss7 entity a policy, the service restarter.

apache brooklyn

More policies

• Optimise to minimise latency to the users:  
entities are moved to locations close to the users on
the network (“follow the sun”)

• Optimise to minimise costs:  
entities are moved to locations offering the lowest
prices (“follow the moon”)

• Policies can be based on anything measurable!

apache brooklyn

The Foundation of Brooklyn

Deployment and wiring Runtime management

Autonomic computing

apache brooklyn

https://en.wikipedia.org/wiki/Autonomic_computing

Autonomic computing refers to the self-managing characteristics of
distributed computing resources, adapting to unpredictable changes while
hiding intrinsic complexity to operators and users […] The system makes
decisions on its own, using high-level policies; it will constantly check and

optimize its status and automatically adapt itself to changing conditions. An
autonomic computing framework is composed of autonomic components

(AC) interacting with each other […] with sensors (for self-monitoring),
effectors (for self-adjustment), knowledge and planner/adapter for

exploiting policies based on self- and environment awareness.

Autonomic computing is a key principle underlying Brooklyn. However you can use - and even develop - Brooklyn without needing
detailed knowledge about autonomics. As a case in point, I know very little about autonomic computing! I have prepared a guide to help
autonomic newbies to get started…

apache brooklyn

The bluffer’s guide to autonomic
computing in Brooklyn

• The autonomic components are the entities

• Entities have:

• Sensors, which provide data to the external world

• Effectors, which cause the entity to change in some way

• Sensor data drives policies;  
policies drive effectors to make changes;  
a continually-adapting feedback loop

• Management can happen locally at the entity;  
or be escalated up the tree to be managed there

apache brooklyn

The status of
Apache Brooklyn

apache brooklyn

Status update

• Version 0.7.0-M1 last before incubation

• Entered Apache Incubator in May 2014

• Version 0.7.0-M2-incubating expected imminently

• Final 0.7.0 expected by year end

• Code is still in rapid development pre-1.0

apache brooklyn

Status update
• 6 committers/PPMC members

• 10 mentors

• A number of additional developers

• A number of commercial customers (via Cloudsoft)

• A number of academic users

• but we are still a small community

apache brooklyn

How to help
• We need a bigger and more diverse community

• …so please join us!

• Download and run, try out deployments

• Share your experiences on the mailing list

• Bug reports, code contributions, documentation
contributions

• Tell us how to make it better!

apache brooklyn

Where to find us
• Official website: https://brooklyn.incubator.apache.org

• Mailing list:  
dev-subscribe@brooklyn.incubator.apache.org  
https://mail-archives.apache.org/mod_mbox/incubator-brooklyn-dev/

• Source code: 
https://github.com/apache/incubator-brooklyn  
or https://git-wip-us.apache.org/repos/asf?p=incubator-brooklyn.git

• IRC channel: #brooklyncentral on Freenode

apache brooklyn

Questions

apache brooklyn

We are hiring!
• Cloudsoft are looking for great software engineers

• To work on Apache Brooklyn and other open source projects,
and with our commercial clients who are putting it into
production

• Brooklyn is written in Java with a JavaScript front-end, but
Java/JavaScript experience not an issue - because we know
that great software engineers can adapt and learn

• Location not an issue - we have a distributed team

jobs@cloudsoft.io

apache brooklyn

Stay tuned for:

Clocker: 
Migrating Complex Applications To Docker  

With Apache Brooklyn

Presented by Andrew Kennedy, Cloudsoft

Next presentation in this room

apache brooklyn

Thank you!

Richard Downer

richard@apache.org - richard@cloudsoft.io

Twitter: @FrontierTown

