
Introduction to
Apache Beam

JB Onofré
Talend

Beam Champion & PMC
Apache Member

Dan Halperin
Google

Beam podling PMC

Apache Beam is a
unified programming

model designed to provide
efficient and portable

data processing pipelines

The Beam Programming Model

SDKs for writing Beam pipelines

•Java, Python

Beam Runners for existing distributed
processing backends

What is Apache Beam?

Google Cloud
Dataflow

Apache
Apex

Apache

Apache
Gearpump

Apache

Cloud
Dataflow

Apache
Spark

Beam Model: Fn Runners

Apache
Flink

Beam Model: Pipeline Construction

Other
LanguagesBeam Java Beam

Python

Execution Execution

Apache
Gearpump

Execution

Apache
Apex

What’s in this talk

• Introduction to Apache Beam

• The Apache Beam Podling

• Beam Demos

Quick overview of the Beam model

PCollection – a parallel collection of timestamped elements that are
 in windows.

Sources & Readers – produce PCollections of timestamped elements and a
 watermark.

ParDo – flatmap over elements of a PCollection.

(Co)GroupByKey – shuffle & group {{K: V}} → {K: [V]}.

Side inputs – global view of a PCollection used for broadcast / joins.

Window – reassign elements to zero or more windows; may be data-dependent.

Triggers – user flow control based on window, watermark, element count,

 lateness - emitting zero or more panes per window.

1.Classic Batch 2. Batch with
Fixed Windows

3. Streaming

5. Streaming With
Retractions

4. Streaming with
Speculative + Late Data

6. Sessions

Data: JSON-encoded analytics stream from site

•{“user”:“dhalperi”,

 “page”:“blog.apache.org/feed/7”,
 “tstamp”:”2016-11-16T15:07Z”, ...}

Desired output: Per-user session length and activity level

•dhalperi, 17 pageviews, 2016-11-16 15:00-15:35

Other application-dependent user goals:

•Live data – can track ongoing sessions with speculative output
dhalperi, 10 pageviews, 2016-11-16 15:00-15:15 (EARLY)

•Archival data – much faster, still correct output respecting event time

Simple clickstream analysis pipeline

PCollection<KV<User, Click>> clickstream =
 pipeline.apply(IO.Read(…))
 .apply(MapElements.of(new ParseClicksAndAssignUser()));

PCollection<KV<User, Long>> userSessions =
 clickstream.apply(Window.into(Sessions.withGapDuration(Minutes(3)))
 .triggering(
 AtWatermark()
 .withEarlyFirings(AtPeriod(Minutes(1)))))
 .apply(Count.perKey());

userSessions.apply(MapElements.of(new FormatSessionsForOutput()))
 .apply(IO.Write(…));

pipeline.run();

Simple clickstream analysis pipeline

Apache Kafka, Apache ActiveMQ, tailing filesystem...

•A live, roughly in-order stream of messages, unbounded PCollections.

•KafkaIO.read().fromTopic(“pageviews”)

HDFS, Apache HBase, yesterday’s Apache Kafka log…

• Archival data, often readable in any order, bounded PCollections.

• TextIO.read().from(“hdfs://facebook/pageviews/*”)

pipeline.apply(IO.Read(…)).apply(MapElements.of(new ParseClicksAndAssignUser()));

Unified unbounded & bounded PCollections

PCollection<KV<User, Long>> userSessions =
 clickstream.apply(Window.into(Sessions.withGapDuration(Minutes(3)))
 .triggering(
 AtWatermark()
 .withEarlyFirings(AtPeriod(Minutes(1)))))

Event time

One session, 3:04-3:25

3:05 3:10 3:15 3:20 3:25

Windowing and triggers

PCollection<KV<User, Long>> userSessions =
 clickstream.apply(Window.into(Sessions.withGapDuration(Minutes(3)))
 .triggering(
 AtWatermark()
 .withEarlyFirings(AtPeriod(Minutes(1)))))

Event time

3:05 3:10 3:15 3:20 3:25

Windowing and triggers

P
ro

ce
ss

in
g

tim
e

Watermark 1 session,
3:04–3:25

2 sessions, 3:04–3:10 &
3:15–3:20(EARLY)

1 session,
3:04–3:10(EARLY)

Daily batch job consuming
Apache Hadoop HDFS archive
● Uses 200 workers.
● Runs for 30 minutes.
● Same input.

● Total ~2.1M final sessions.
● 100 worker-hours

Streaming job consuming
Apache Kafka stream
● Uses 10 workers.
● Pipeline lag of a few minutes.
● With ~2 million users over 1 day.

● Total ~4.7M messages (early +
final sessions) to downstream.

● 240 worker-hours

What does the user have to change to get these results?

A: O(10 lines of code) + Command-line arguments

Two example runs of this pipeline

● Introduced Beam
● Quick overview of unified programming model
● Sample clickstream analysis pipeline
● Portability across both IOs and runners

Summary so far

Next: Quick dip into efficiency

W
or

kl
oa

d

Time

Streaming pipeline’s input varies Batch pipelines go through stages

Pipeline workload varies

W
or

kl
oa

d

Time Time

Over-provisioned / worst case Under-provisioned / average case

Perils of fixed decisions

W
or

kl
oa

d

Time

Ideal case

W
or

ke
r

Time

Work is unevenly distributed across tasks.

Reasons:

•Underlying data.

•Processing.

•Runtime effects.

Effects are cumulative per stage.

The Straggler problem

Split files into equal sizes?

Preemptively over-split?

Detect slow workers and re-execute?

Sample extensively and then split?

All of these have major costs; none is a complete solution.
W

or
ke

r

Time

Standard workarounds for Stragglers

No amount of upfront heuristic tuning
(be it manual or automatic) is enough to

guarantee good performance: the system will
always hit unpredictable situations at run-time.

A system that's able to dynamically adapt and
get out of a bad situation is much more

powerful than one that heuristically hopes to
avoid getting into it.

Readers provide simple progress signals, enable runners to take action based
on execution-time characteristics.

APIs for how much work is pending:

•Bounded: double getFractionConsumed()

•Unbounded: long getBacklogBytes()

Work-stealing:

•Bounded: Source splitAtFraction(double)
 int getParallelismRemaining()

Beam Readers enable dynamic adaptation

Now

Done
work

Active
work

Predicted
completion

Ta
sk

s

Time

Predicted avg

Dynamic work rebalancing

2-stage pipeline,
split “evenly” but uneven in practice

Same pipeline
dynamic work rebalancing enabled

Savings

Dynamic work rebalancing: a real example

What’s in this talk

• Introduction to Apache Beam

• The Apache Beam Podling

• Beam Demos

MapReduce

Apache
Beam

DremelPubSubColossus

MillwheelFlumeMegastoreSpanner

Bigtable

The Evolution of Apache Beam

Google Cloud
Dataflow

Apache
Spark

Cloud
Dataflow

1. End users: who want to write pipelines in a
language that’s familiar.

2. SDK writers: who want to make Beam
concepts available in new languages.

3. Library writers: who want to provide useful
composite transformations.

4. Runner writers: who have a distributed
processing environment and want to
support Beam pipelines.

5. IO providers: who want efficient
interoperation with Beam pipelines on all
runners.

6. DSL writers: who want higher-level
interfaces to create pipelines.

Beam Model: Fn Runners

Apache
Flink

Beam Model: Pipeline Construction

Other
LanguagesBeam Java Beam

Python

Execution Execution

Apache
Gearpump

Execution

The Apache Beam Vision

Apache
Apex

Code donations from:
• Core Java SDK and Dataflow runner (Google)
• Apache Flink runner (data Artisans)
• Apache Spark runner (Cloudera)

Initial podling PMC
• Cloudera (2)
• data Artisans (4)
• Google (10)
• PayPal (1)
• Talend (1)

February 2016: Beam enters incubation

Refactoring & De-Google-ification

Contribution Guide
• Getting started
• Process: how to contribute, how to review, how to merge
• Populate JIRA with old issues, curate “starter” issues, etc.
• Strong commitment to testing

Experienced committers providing extensive, public code review
(onboarding)
• No merges without a GitHub pull request & LGTM

First few months: Bootstrapping

Since June Release

• Community contributions
• New SDK: Python (feature branch)
• New IOs (Apache ActiveMQ, JDBC, MongoDB, Amazon Kinesis, …)
• New libraries of extensions
• Two new runners: Apache Apex & Apache Gearpump

• Added three new committers
• tgroh (core, Google), tweise (Apex, DataTorrent), jesseanderson

(Smoking Hand, Evangelism & Users)

• Documented release process & executed two more releases
3 releases, 3 committers, 2 organizations

• >10 conference talks and meetups by at least 3 organizations

Beam is community owned

• Growing community
• more than 1500 messages on mailing lists
• 500 mailing lists subscribers
• 4000 commits
• 950 Jira

• 1350 pull requests - 2nd most in Apache since incubation

Beam contributors
incubating as Apache BeamGoogle Cloud Dataflow

Parity since first
release in June

What’s in this talk

• Introduction to Apache Beam

• The Apache Beam Podling

• Beam Demos

Demo

Goal: show WordCount on 5 runners
• Beam’s Direct Runner (testing, model enforcement,

playground)
• Apache Apex (newest runner!)
• Apache Flink
• Apache Spark
• Google Cloud Dataflow

(DEMO)

Conclusion: Why Beam for Apache?

1. Correct - Event windowing, triggering, watermarking, lateness, etc.

2. Portable - Users can use the same code with different runners (agnostic) and
backends on premise, in the cloud, or locally

3. Unified - Same unified model for batch and stream processing

4. Apache community enables a network effect - Integrate with Beam and you
automatically integrate with Beam’s users, SDKs, runners, libraries, …

Graduation to TLP - Empower user adoption

New website - Improve both look’n feel and
content of the website, more focused on users

Polish user experience - Improve the rough
edges in submitting and managing jobs

Keep growing - Integrations planned & ongoing
with new runners (Apache Storm), new DSLs
(Apache Calcite, Scio), new IOs (Apache
Cassandra, ElasticSearch), etc.

Apache Beam next steps

Learn More!

Apache Beam (incubating)
http://beam.incubator.apache.org

Beam contribution guide:
 http://beam.incubator.apache.org/contribute/contribution-guide

Join the Beam mailing lists!
user-subscribe@beam.incubator.apache.org
dev-subscribe@beam.incubator.apache.org

Beam blog: http://beam.incubator.apache.org/blog

Follow @ApacheBeam on Twitter

http://beam.incubator.apache.org
http://beam.incubator.apache.org/contribute/contribution-guide
http://beam.incubator.apache.org/blog

