Apache Sling - A REST-based Web Application Framework
Carsten Ziegeler | cziegeler@apache.org

About

cziegeler@apache.org @cziegeler

RnD Team at Adobe Research Switzerland

Member of the Apache Software Foundation
Apache Felix and Apache Sling (PMC and committer)
And other Apache projects

OSGi Core Platform and Enterprise Expert Groups
Member of the OSGi Board

Book / article author, technical reviewer, conference speaker

Web Challenges

Publish and process huge amount of information
Highly dynamic
Different types
Different output formats

Collaboration and integration

Fast changing requirements

Rapid prototyping and development

Dynamic, extensible but maintainable

Web Challenges - Entering Apache Sling

Publish and process huge amount of information
Highly dynamic
Different types
Different output formats

Collaboration and integration

Fast changing requirements
Rapid prototyping and development
Dynamic, extensible but maintainable

JCR

REST /
ROA

Scripting

OSGl

Apache Sling - The Fun is Back

Web framework

Java Content Repository (JCR)

ROA / REST

Scripting Inside

OSGi

Apache Open Source top level project
http://sling.apache.org

Driving force behind several OSGi related projects at Apache

Key General Takeaways

Leveraging REST
Embracing OSG
Hidden gems in Apache projects

Apache Jackrabbit - A Java Content Repository

Motivation for JCR

Tried and trusted NoSQL solution
Standard Java API
First spec released in May 2005
Various implementations, products, and solutions

Open Source implementation since 2006 (Apache Jackrabbit)

Think about your data use cases / problems
JCR might help!

Consider JCR

Data structure
Supporting the web
ACID

Security

Additional features

The Structure of Data

A data storage should be flexible and
Allow to model app data in the “right” way

Optimal way of dealing with the data in the app

The Structure of Data

A data storage should be flexible and
Allow to model data in the "right” way
What is the “right" way?

Tables?

Key-Value-Pairs?

Schema based?

Semi structured or even unstructured?

Flat, hierarchical or graph?

The Structure of Data

The right way depends on the application:
Tables
Key-Value-Pairs
Schema based
Semi structured and unstructured

Flat, hierarchical, and graph

An app might have more than one "right” way

But: A lot of data can be modeled in a hierarchy

Sample: Product Catalog

Java Content Repository

Hierarchical content

Nodes with properties

(Table is a special tree)
Structured

Nodetypes with typed properties
And/or semi structured and unstructured

Fine and coarse-grained

Single repository for all content!

Sample: Product Catalog

Sample: Product Catalog

Defined by node type E

Sample: Product Catalog

Defined by node type E

Authentication and Access Control

Apache Jackrabbit supports JAAS
Custom login modules possible
Deny / Allow of privileges on a node
Like read, write, add, delete

Inheritance from parent

Tree allows structuring based on access rights

Access control is done in the data tier!

Sample Content Structure with ACLs

/0 STOP,

4\ Read for everyone, write for owner

@ Write for owner

JSR 170 / JSR 283: Content Repository for JavaTM technology API

(Java) Standard - Version 1.0 and 2.0
Supported by many vendors
Used by many products and projects
Several open source solutions

Data model and features

Query and observation

Apache Jackrabbit

JSR 170/283 reference implementation
Apache TLP since 2006
Vital community

Jackrabbit

™ Apache

N . l . OA K I Apache Jackrabbit Software Foundation
eW I m P e m e ntatl O n ° (') Welcome to Apache Jackrabbit haomerebot

Downloads
AQ

Apache] . . Jackrabbit Wiki

of the Content Repository for Java Technology API powmoaad Jackrabbit History

(ICR). A content repository is a hierarchical content store i Apache Jackrabbit Dg::‘v:ger;l‘:lr::g

with support for structured and unstructured content, full Standalone Server

text search, versioning, transactions, observation, and more. ;‘af;'ggs; Components
JCR & API

Version 1.0 of the JCR API was specified by the Java Specification Request 170 (JSR 170) and version 2.0 by JSR Jackrabbit Architecture
283 Deployment Models
&8 Jackrabbit Configuration
Node Types
Apache Jackrabbit is a project of the Apache Software Foundation. Object Content Mapping
Development
. Jackrabbit Team
Apache Jackrabbit News Jackrabbit Roadmap
Building Jackrabbit
5 Mailing Lists
October 30, 2009: Apache Jackrabbit 2.0 betal released Issue Tracker
This is a beta release of Apache Jackrabbit 2.0. This release is a fully compliant implementation of the JCR 2.0 gg;:‘cneu?f:fj‘ég’ryamn
API, specified by the Java Specification Request 283 (JSR 283). The beta status of this release means that some Website
Creating Releases
Attribution
Apache Softw:
23,2009: j i 1.4.11 released st

The jackrabbit-core 1.4.11 patch release is targeted to users who are not yet ready to upgrade to the more recent gi""”gﬁ’zzg’nsms

Upcoming Events

parts of the implementation are not yet ready for normal ion use. See the downloads page for more details.

Jackrabbit releases, but who still need the XPath formatting fix from issue JCR-2052. See the downloads page for
more details.

September 23, 2009: Apache Jackrabbit 2.0 alphall released

This is an alpha release of Apache Jackrabbit 2.0. This release implements a pre-release version of the JCR 2.0
API, specified by the Java Specification Request 283 (JSR 283). The purpose of this alpha release is to allow
people to test and review the new JCR 2.0 features before they are finalized.

Oakland, CA

http://jackrabbit.apache.org/

ROA and REST

Data and the Web?

A website is hierarchical by nature

Web applications provide data in different ways
HTML
JSON

Provide your data in a RESTful way

http://.../products/books/english/it/databases/apachejackrabbit.(html|
json)

Avoid mapping/conversion
http://.../products.jsp?id=5643564

Resource Oriented Architecture |

Every piece of information is a resource
News entry, book, book title, book cover image
Descriptive URI

Stateless web architecture (REST)

Request contains all relevant information

Targets the resource
Leverage HTTP
GET for rendering, POST/PUT/DELETE for operations

Resource Oriented Architecture Il

JCR and Apache Jackrabbit are a perfect match for the web
Hierarchical
From a single piece of information to binaries

Elegant way to bring data to the web

Apache Sling is (the|one) web framework

Sample Application: Slingshot

Digital Asset Management
Hierarchical storage of pictures
Upload
Tagging
Searching
Automatic thumbnail generation Poor man'’s flickr...

Sample application from Apache Sling

Slingshot Content Structure

Facts About Slingshot

Java web application
Uses Apache Sling as web framework

Content repository managed by Apache Jackrabbit
Interaction through Sling's Resource API

REST with Apache Sling

Default behavior for GET

Creating/Updating content through POST
Default behavior

Additional operations/methods

Resource-first request processing!

Resource Tree

/\
Travel misc
Europe images workflows
EpEpE J U J

http://localhost/Travel/Europe

Resource: /Travel/Europe

Resource

Apache Sling's abstraction of the thing addressed by
the request URI

Usually mapped to a JCR node
File system, bundle, Cassandra, MongoDB, database..

Attributes of resources
Path in the resource tree

Resource type
Metadata, e.g. last modification date

Resource-first Request Processing

URI Decomposition

Resource and representation

/Travel/Europe/Basel.print.a4.html

\) \ J \ J
Y Y Y

Resource Path Selectors Extension

Content retrieved from resource tree

Rendering based on resource type, selectors and extension

Basic Request Processing Steps

Resolve the resource (using URI)
Decomposition

Resolve rendering script
Source: resource type, selectors and extension
Scripts wrapped by generic servlet

Create rendering chain
Configurable (servlet) filters
Rendering servlet

Invoke rendering chain

Resource Resolver |

Tasks:
Finding resources
Getting resources

Querying resources
Not Thread Safe!

Includes all objects fetched via resolver

Resource Resolver Il

Central gateway for resource handling
Abstracts path resolution
Abstracts access to the persistence layer(s)

Configurable
Mappings (Multi site mgmt, beautify paths)

Resource Tree

/

/\

Travel misc

7 VAN

Europe images workflows

Mounting Resource Providers

/é(\
Travel misc
Europe images workflows
Resource Resource Resource Resource
Provider Provider Provider Provider
[DB] [JCR] [File] [Mongo]

Scripting

Scripting Inside

It's your choice

JSP, servlet, ESP, Scala

javax.script

own script handlers
Scripts stored in OSGi bundles or the resource tree
Scripts are searched at configured locations
Default servlets

JSON, XML

Error Handling

Script Resolving |

Path to script is build from...
Configured search paths (/apps, /libs)
Resource type converted to path (slingshot/Album)
Selector string (print/a4)

Request method & extension
GET = Extension (html)
Else -> Method (POST, PUT, DELETE...)

Script Resolving Example

URI: /Travel/Europe/Basel.print.a4.html
Resource: /Travel/Europe/Basel

Resource Type: slingshot:Album

Script for GET:
[apps/slingshot/Album/print/a4/html.*

Script for POST:
/libs/slingshot/Album/print/a4/POST.*

Script Resolving |l

Scripts are searched by best matching
[apps/slingshot/Album/print/a4/html.*
/libs/slingshot/Album/print/a4/html.*
[apps/slingshot/Album/html*
/libs/slingshot/Album/html.*

Resource has a type and a super type

Script inheritance
Default script (JSON...)

Sample JSP Script

<%@page import="org.apache.sling.api.resource.Resource,
org.apache.sling.api.resource.ValueMap" %><%

%><%@taglib prefix="sling" uri="http://sling.apache.org/taglibs/sling/1.0" %><%

%><sling:defineObjects/><%

final ValueMap attributes = resource.getValueMap();
final String albumName = attributes.get(”title”,Resource.getName());
%><html>
<head>
<title>Album <%= albumName %></title>
</head>
<body>

<h2>Contained Albums</hZ>
<%
for (final Resource current : resource.getChildren()) {
if (current.isResourceType(Constants.RESOURCETYPE_ALBUM)) {
%><sling:include resource="<%= current %>"/><%
}

%>

Resource-first Request Processing

ROA

URI decomposition
Resource resolving
Script resolving

Recursion

Flexible script search algorithm

OSGi

Runtime Requirements

Modularization - Modularity is key
Manage growing complexity
Support (dynamic) extensibility

Lifecycle management

Configuration management

Modules, services

Different distributions/feature sets

Dynamic system changes

OSGi in 5..ehm..1 Minute

Specification of a framework

Module concept (bundles) with lifecycle

Simple but powerful component model
Lifecycle management
Publish/Find/Bind service registration

Dynamic!

Uses the concept of bundles

An OSGi Bundle

Leverages the Java packaging mechanism: JAR files
Contains Java classes and resources

Additional meta-data

Implicit dependencies to other bundles

Package imports/exports

Semantic versioning of API

Services

OSGi offers an API to register services
Service is registered by its interface name(s)
Implementation is bundle private

Several components for same service possible (from different
bundles)

Bundles can find and use services

By interface names
With additional filters

The OSGi Core

Minimal but sufficient API for services

Minimal overhead: Good for simple bundles

No support for component management

No support for configuration management

Requires sometimes a lot of Java coding

Additional (optional) OSGi extensions
Declarative Service Specification

Configuration Admin Service Specification

OSGi Declarative Service Specification

Component model

Component lifecycle management
Publishing services

Consuming services

Default configuration

Support for Config Admin

Config Admin and Metatype

OSGi Config Admin
Configuration Manager
Persistence storage
API to retrieve/update/remove configs
Works with Declarative Services
OSGi Metatype Service
Description of bundle metadata

Description of service configurations

Top-level project (March 2007)
Healthy and diverse community
OSGi R5 implementation
Framework (frequent releases)
Various interesting subprojects
Tools

Maven Plugins, Web Console

Contributions to Apache Felix

Declarative service implementation
Config admin implementation
Metatype implementation

Preferences implementation
Web console (!)

Maven SCR Plugin (!) and SCR tooling

Apache Sling Runtime

Uses Apache Felix
Runtime: Apache Sling Launchpad
Two flavors
Standalone Java Application
Web application

But Sling can be deployed in any OSGi framework!

Standalone Java Application

One single executable JAR file

Small Launcher
Starts OSGi Framework (Apache Felix)
Uses Jetty in an OSGi Bundle

Web Application

Extends Standalone Application
Replaces Main with a Servlet

Uses a bridge to connect Sling to the Servlet Container

Facts About Apache Sling

Sling API
Uses resource abstraction
Use JCR, MongoDB, Cassandra...
Highly modular and runtime configurable
Everything is a OSGi bundle
Deploy what you need!
Commons Bundles (Threads, Scheduling...)
OSGi Provisioning
Cloud discovery
Distributed eventing

Apache Sling - The Fun is Back

Web Framework
Java Content Repository

REST

Scripting inside

OSGi

Apache Open Source project
Check it out today!

