
Apache Sling – A REST-based Web Application Framework 
Carsten Ziegeler | cziegeler@apache.org 
ApacheCon NA 2014 
 



About 
cziegeler@apache.org           @cziegeler 

•  RnD Team at Adobe Research Switzerland 

•  Member of the Apache Software Foundation 
•  Apache Felix and Apache Sling (PMC and committer) 
•  And other Apache projects 

•  OSGi Core Platform and Enterprise Expert Groups 
•  Member of the OSGi Board 
•  Book / article author, technical reviewer, conference speaker 

2 



Web Challenges 

§  Publish and process huge amount of information 

§  Highly dynamic 
§  Different types 
§  Different output formats 

§  Collaboration and integration 
§  Fast changing requirements 

§  Rapid prototyping and development 
§  Dynamic, extensible but maintainable 
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Web Challenges – Entering Apache Sling 

§  Publish and process huge amount of information 

§  Highly dynamic 
§  Different types 
§  Different output formats 

§  Collaboration and integration 
§  Fast changing requirements 

§  Rapid prototyping and development 
§  Dynamic, extensible but maintainable 
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Apache Sling – The Fun is Back 

§  Web framework 

§  Java Content Repository (JCR) 
§  ROA / REST 
§  Scripting Inside 
§  OSGi 
§  Apache Open Source top level project 

§  http://sling.apache.org 
§  Driving force behind several OSGi related projects at Apache 
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Key General Takeaways 

§  Leveraging REST 
§  Embracing OSG 
§  Hidden gems in Apache projects 
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Apache Jackrabbit  - A Java Content Repository 



Motivation for JCR 

§  Tried and trusted NoSQL solution 
§  Standard Java API 

§  First spec released in May 2005 
§  Various implementations, products, and solutions 
§  Open Source implementation since 2006 (Apache Jackrabbit) 

§  Think about your data use cases / problems 
§  JCR might help! 
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Consider JCR 

§  Data structure 
§  Supporting the web 
§  ACID 
§  Security 
§  Additional features 
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The Structure of Data 

§  A data storage should be flexible and  

§  Allow to model app data in the “right” way 
§  Optimal way of dealing with the data in the app 
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The Structure of Data 

§  A data storage should be flexible and  

§  Allow to model data in the “right” way 
§  What is the “right” way? 

§  Tables? 
§  Key-Value-Pairs? 
§  Schema based? 
§  Semi structured or even unstructured? 
§  Flat, hierarchical or graph? 
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The Structure of Data 

§  The right way depends on the application: 

§  Tables 
§  Key-Value-Pairs 
§  Schema based 
§  Semi structured and unstructured 
§  Flat, hierarchical, and graph 
§  … 

§  An app might have more than one “right” way 
§  But: A lot of data can be modeled in a hierarchy 
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Java Content Repository 

§  Hierarchical content 

§  Nodes with properties 
§  (Table is a special tree) 

§  Structured 
§  Nodetypes with typed properties 

§  And/or semi structured and unstructured 
§  Fine and coarse-grained 
§  Single repository for all content! 
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Databases 

authors cover title 

Sample: Product Catalog 
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Databases 

authors cover title 

Sample: Product Catalog 
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Databases 
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Sample: Product Catalog 
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Authentication and Access Control 

§  Apache Jackrabbit supports JAAS 

§  Custom login modules possible 
§  Deny / Allow of privileges on a node   

§  Like read, write, add, delete 
§  Inheritance from parent 

§  Tree allows structuring based on access rights 
§  Access control is done in the data tier! 
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JSR 170 / JSR 283: Content Repository for JavaTM technology API 

§  (Java) Standard – Version 1.0 and 2.0 

§  Supported by many vendors 
§  Used by many products and projects 
§  Several open source solutions 

§  Data model and features 
§  Query and observation 
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Apache Jackrabbit 

§  JSR 170/283 reference implementation 
§  Apache TLP since 2006 
§  Vital community 
§  New implementation: OAK (!) 
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http://jackrabbit.apache.org/ 
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ROA and REST 



Data and the Web? 

§  A website is hierarchical by nature 
§  Web applications provide data in different ways 

§  HTML 
§  JSON 

§  Provide your data in a RESTful way 
§  http://…/products/books/english/it/databases/apachejackrabbit.(html|

json) 

§  Avoid mapping/conversion 
§  http://…/products.jsp?id=5643564 
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Resource Oriented Architecture I 

§  Every piece of information is a resource 
§  News entry, book, book title, book cover image 
§  Descriptive URI 

§  Stateless web architecture (REST) 
§  Request contains all relevant information 
§  Targets the resource 

§  Leverage HTTP 
§  GET for rendering, POST/PUT/DELETE for operations 
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Resource Oriented Architecture II 

§  JCR and Apache Jackrabbit are a perfect match for the web 
§  Hierarchical 
§  From a single piece of information to binaries 

§  Elegant way to bring data to the web 
§  Apache Sling is (the|one) web framework 
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Sample Application: Slingshot 

§  Digital Asset Management 

§  Hierarchical storage of pictures 
§  Upload 
§  Tagging 
§  Searching 
§  Automatic thumbnail generation 

§  Sample application from Apache Sling 

26 

Poor man's flickr... 



Basel 

City 

Europe 

Travel Family 

Amsterdam 

2007 

Wedding 

1997 

Photo 

Photo 

Photo 

Photo 

Slingshot Content Structure 

27 



Facts About Slingshot 

§  Java web application 
§  Uses Apache Sling as web framework 
§  Content repository managed by Apache Jackrabbit 
§  Interaction through Sling‘s Resource API 
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REST with Apache Sling 

§  Default behavior for GET 
§  Creating/Updating content through POST 

§  Default behavior 
§  Additional operations/methods 
§  Resource-first request processing! 
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Resource Tree 
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Resource    

§  Apache Sling’s abstraction of the thing addressed by 
the request URI 
§  Usually mapped to a JCR node 
§  File system, bundle, Cassandra, MongoDB, database.. 

§  Attributes of resources 
§  Path in the resource tree 
§  Resource type 
§  Metadata, e.g. last modification date 
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Resource-first Request Processing 

§  URI Decomposition 

§  Resource and representation 

§  /Travel/Europe/Basel.print.a4.html 

§    Resource Path                      Selectors  Extension 
§  Content retrieved from resource tree 
§  Rendering based on resource type, selectors and extension 
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Basic Request Processing Steps 

§  Resolve the resource (using URI) 
§  Decomposition 

§  Resolve rendering script 
§  Source: resource type, selectors and extension 
§  Scripts wrapped by generic servlet 

§  Create rendering chain 
§  Configurable (servlet) filters 
§  Rendering servlet 

§  Invoke rendering chain 
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Resource Resolver I   

§  Tasks: 
§  Finding resources 
§  Getting resources 
§  Querying resources 

§  Not Thread Safe! 
§  Includes all objects fetched via resolver 

34 



Resource Resolver II   

§  Central gateway for resource handling 
§  Abstracts path resolution 
§  Abstracts access to the persistence layer(s) 
§  Configurable 

§  Mappings (Multi site mgmt, beautify paths) 
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Resource Tree 
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Mounting Resource Providers 
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Scripting 



Scripting Inside 

§  It’s your choice 
§  JSP, servlet, ESP, Scala 
§  javax.script 
§  own script handlers 

§  Scripts stored in OSGi bundles or the resource tree 
§  Scripts are searched at configured locations 
§  Default servlets 

§  JSON, XML 
§  Error Handling 
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Script Resolving I 

§  Path to script is build from… 
§  Configured search paths ( /apps, /libs ) 
§  Resource type converted to path (slingshot/Album) 
§  Selector string (print/a4) 
§  Request method & extension 

§  GET à Extension (html) 
§  Else -> Method ( POST, PUT, DELETE…) 
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Script Resolving Example 
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§  URI: /Travel/Europe/Basel.print.a4.html 
§  Resource: /Travel/Europe/Basel 
§  Resource Type: slingshot:Album 
§  Script for GET: 

§  /apps/slingshot/Album/print/a4/html.* 
§  Script for POST: 

§  /libs/slingshot/Album/print/a4/POST.* 



Script Resolving II 

§  Scripts are searched by best matching 
§  /apps/slingshot/Album/print/a4/html.* 
§  /libs/slingshot/Album/print/a4/html.* 
§  /apps/slingshot/Album/html.* 
§  /libs/slingshot/Album/html.* 

§  Resource has a type and a super type 
§  Script inheritance 
§  Default script (JSON...) 
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Sample JSP Script 
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<%@page import="org.apache.sling.api.resource.Resource,	
                org.apache.sling.api.resource.ValueMap" %><%	
%><%@taglib prefix="sling" uri="http://sling.apache.org/taglibs/sling/1.0" %><%	
%><sling:defineObjects/><%	
	
    final ValueMap attributes = resource.getValueMap();	
    final String albumName = attributes.get(”title”,Resource.getName());	
%><html>	
  <head>	
    <title>Album <%= albumName %></title>	
  </head>	
<body>	
   … 

 <h2>Contained Albums</h2>	
    <%	
    for ( final Resource current : resource.getChildren() ) {	
        if ( current.isResourceType(Constants.RESOURCETYPE_ALBUM) ) {	
            %><sling:include resource="<%= current %>”/><%	
        }	
    }	
    %> 



Resource-first Request Processing 

§  ROA 
§  URI decomposition 
§  Resource resolving 
§  Script resolving 

§  Recursion 
§  Flexible script search algorithm 
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OSGi 



Runtime Requirements 

§  Modularization – Modularity is key 
§  Manage growing complexity 
§  Support (dynamic) extensibility 

§  Lifecycle management 
§  Configuration management 
§  Modules, services 
§  Different distributions/feature sets 
§  Dynamic system changes 

46 



OSGi in 5..ehm..1 Minute 

§  Specification of a framework 
§  Module concept (bundles) with lifecycle 
§  Simple but powerful component model 

§  Lifecycle management 
§  Publish/Find/Bind service registration 

§  Dynamic! 
§  Uses the concept of bundles 
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An OSGi Bundle 

§  Leverages the Java packaging mechanism: JAR files 
§  Contains Java classes and resources 
§  Additional meta-data 
§  Implicit dependencies to other bundles 
§  Package imports/exports 
§  Semantic versioning of API 
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Services 

§  OSGi offers an API to register services 
§  Service is registered by its interface name(s) 
§  Implementation is bundle private 
§  Several components for same service possible (from different 

bundles) 
§  Bundles can find and use services 

§  By interface names 
§  With additional filters 
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The OSGi Core 

§  Minimal but sufficient API for services 
§  Minimal overhead: Good for simple bundles 
§  No support for component management 
§  No support for configuration management 
§  Requires sometimes a lot of Java coding 
§  Additional (optional) OSGi extensions 

§  Declarative Service Specification  
§  Configuration Admin Service Specification 
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OSGi Declarative Service Specification 

§  Component model 
§  Component lifecycle management 
§  Publishing services 
§  Consuming services 
§  Default configuration 
§  Support for Config Admin 
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Config Admin and Metatype 

§  OSGi Config Admin 
§  Configuration Manager 
§  Persistence storage 
§  API to retrieve/update/remove configs 
§  Works with Declarative Services 

§  OSGi Metatype Service 
§  Description of bundle metadata 
§  Description of service configurations 

52 



Apache Felix 

§  Top-level project (March 2007) 
§  Healthy and diverse community 
§  OSGi R5 implementation 
§  Framework (frequent releases) 
§  Various interesting subprojects 
§  Tools 

§  Maven Plugins, Web Console 
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Contributions to Apache Felix 

§  Declarative service implementation 
§  Config admin implementation 
§  Metatype implementation 
§  Preferences implementation 
§  Web console (!) 
§  Maven SCR Plugin (!) and SCR tooling 
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Apache Sling Runtime 

§  Uses Apache Felix 
§  Runtime: Apache Sling Launchpad 
§  Two flavors 

§  Standalone Java Application 
§  Web application 

§  But Sling can be deployed in any OSGi framework! 
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Standalone Java Application 

§  One single executable JAR file 
§  Small Launcher 
§  Starts OSGi Framework (Apache Felix) 
§  Uses Jetty in an OSGi Bundle 
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Web Application 

§  Extends Standalone Application 
§  Replaces Main with a Servlet 
§  Uses a bridge to connect Sling to the Servlet Container 
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Facts About Apache Sling 

§  Sling API 
§  Uses resource abstraction 

§  Use JCR, MongoDB, Cassandra… 
§  Highly modular and runtime configurable 
§  Everything is a OSGi bundle 

§  Deploy what you need! 
§  Commons Bundles (Threads, Scheduling…) 
§  OSGi Provisioning 
§  Cloud discovery 
§  Distributed eventing 
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Apache Sling – The Fun is Back 

§  Web Framework 
§  Java Content Repository 

§  REST 
§  Scripting inside 

§  OSGi 
§  Apache Open Source project 
§  Check it out today! 
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