
Apache Sling – A REST-based Web Application Framework
Carsten Ziegeler | cziegeler@apache.org
ApacheCon NA 2014

About
cziegeler@apache.org @cziegeler

•  RnD Team at Adobe Research Switzerland

•  Member of the Apache Software Foundation
•  Apache Felix and Apache Sling (PMC and committer)
•  And other Apache projects

•  OSGi Core Platform and Enterprise Expert Groups
•  Member of the OSGi Board
•  Book / article author, technical reviewer, conference speaker

2

Web Challenges

§  Publish and process huge amount of information

§  Highly dynamic
§  Different types
§  Different output formats

§  Collaboration and integration
§  Fast changing requirements

§  Rapid prototyping and development
§  Dynamic, extensible but maintainable

3

Web Challenges – Entering Apache Sling

§  Publish and process huge amount of information

§  Highly dynamic
§  Different types
§  Different output formats

§  Collaboration and integration
§  Fast changing requirements

§  Rapid prototyping and development
§  Dynamic, extensible but maintainable

4

JCR

REST /
ROA

Scripting

OSGI

Apache Sling – The Fun is Back

§  Web framework

§  Java Content Repository (JCR)
§  ROA / REST
§  Scripting Inside
§  OSGi
§  Apache Open Source top level project

§  http://sling.apache.org
§  Driving force behind several OSGi related projects at Apache

5

Key General Takeaways

§  Leveraging REST
§  Embracing OSG
§  Hidden gems in Apache projects

6

7

Apache Jackrabbit - A Java Content Repository

Motivation for JCR

§  Tried and trusted NoSQL solution
§  Standard Java API

§  First spec released in May 2005
§  Various implementations, products, and solutions
§  Open Source implementation since 2006 (Apache Jackrabbit)

§  Think about your data use cases / problems
§  JCR might help!

8

Consider JCR

§  Data structure
§  Supporting the web
§  ACID
§  Security
§  Additional features

9

The Structure of Data

§  A data storage should be flexible and

§  Allow to model app data in the “right” way
§  Optimal way of dealing with the data in the app

10

The Structure of Data

§  A data storage should be flexible and

§  Allow to model data in the “right” way
§  What is the “right” way?

§  Tables?
§  Key-Value-Pairs?
§  Schema based?
§  Semi structured or even unstructured?
§  Flat, hierarchical or graph?

11

The Structure of Data

§  The right way depends on the application:

§  Tables
§  Key-Value-Pairs
§  Schema based
§  Semi structured and unstructured
§  Flat, hierarchical, and graph
§  …

§  An app might have more than one “right” way
§  But: A lot of data can be modeled in a hierarchy

12

IT

Databases

English

Books DVDs

Fiction

Douglas Adams

English

SF

2010

Apache Jackrabbit

2001

A Hitch..

Sample: Product Catalog

13

Java Content Repository

§  Hierarchical content

§  Nodes with properties
§  (Table is a special tree)

§  Structured
§  Nodetypes with typed properties

§  And/or semi structured and unstructured
§  Fine and coarse-grained
§  Single repository for all content!

14

Databases

authors cover title

Sample: Product Catalog

15

ISBN

Apache Jackrabbit

Databases

authors cover title

Sample: Product Catalog

16

ISBN

Apache Jackrabbit

Defined by node type

Databases

authors cover title

Sample: Product Catalog

17

ISBN

Apache Jackrabbit

Defined by node type
User Images

img1 img2

Authentication and Access Control

§  Apache Jackrabbit supports JAAS

§  Custom login modules possible
§  Deny / Allow of privileges on a node

§  Like read, write, add, delete
§  Inheritance from parent

§  Tree allows structuring based on access rights
§  Access control is done in the data tier!

18

Basel

public

johndoe janedoe

Amsterdam Wedding

1997

Photo

Photo

Photo

Photo

Sample Content Structure with ACLs

19

public private private

Read for everyone, write for owner

Write for owner

JSR 170 / JSR 283: Content Repository for JavaTM technology API

§  (Java) Standard – Version 1.0 and 2.0

§  Supported by many vendors
§  Used by many products and projects
§  Several open source solutions

§  Data model and features
§  Query and observation

20

Apache Jackrabbit

§  JSR 170/283 reference implementation
§  Apache TLP since 2006
§  Vital community
§  New implementation: OAK (!)

21

21

http://jackrabbit.apache.org/

22

ROA and REST

Data and the Web?

§  A website is hierarchical by nature
§  Web applications provide data in different ways

§  HTML
§  JSON

§  Provide your data in a RESTful way
§  http://…/products/books/english/it/databases/apachejackrabbit.(html|

json)

§  Avoid mapping/conversion
§  http://…/products.jsp?id=5643564

23

Resource Oriented Architecture I

§  Every piece of information is a resource
§  News entry, book, book title, book cover image
§  Descriptive URI

§  Stateless web architecture (REST)
§  Request contains all relevant information
§  Targets the resource

§  Leverage HTTP
§  GET for rendering, POST/PUT/DELETE for operations

24

Resource Oriented Architecture II

§  JCR and Apache Jackrabbit are a perfect match for the web
§  Hierarchical
§  From a single piece of information to binaries

§  Elegant way to bring data to the web
§  Apache Sling is (the|one) web framework

25

Sample Application: Slingshot

§  Digital Asset Management

§  Hierarchical storage of pictures
§  Upload
§  Tagging
§  Searching
§  Automatic thumbnail generation

§  Sample application from Apache Sling

26

Poor man's flickr...

Basel

City

Europe

Travel Family

Amsterdam

2007

Wedding

1997

Photo

Photo

Photo

Photo

Slingshot Content Structure

27

Facts About Slingshot

§  Java web application
§  Uses Apache Sling as web framework
§  Content repository managed by Apache Jackrabbit
§  Interaction through Sling‘s Resource API

28

REST with Apache Sling

§  Default behavior for GET
§  Creating/Updating content through POST

§  Default behavior
§  Additional operations/methods
§  Resource-first request processing!

29

Resource Tree

30

/

Travel

Europe

misc

workflows images

http://localhost/Travel/Europe

Resource: /Travel/Europe

Resource

§  Apache Sling’s abstraction of the thing addressed by
the request URI
§  Usually mapped to a JCR node
§  File system, bundle, Cassandra, MongoDB, database..

§  Attributes of resources
§  Path in the resource tree
§  Resource type
§  Metadata, e.g. last modification date

31

Resource-first Request Processing

§  URI Decomposition

§  Resource and representation

§  /Travel/Europe/Basel.print.a4.html

§  Resource Path Selectors Extension
§  Content retrieved from resource tree
§  Rendering based on resource type, selectors and extension

32

Basic Request Processing Steps

§  Resolve the resource (using URI)
§  Decomposition

§  Resolve rendering script
§  Source: resource type, selectors and extension
§  Scripts wrapped by generic servlet

§  Create rendering chain
§  Configurable (servlet) filters
§  Rendering servlet

§  Invoke rendering chain

33

Resource Resolver I

§  Tasks:
§  Finding resources
§  Getting resources
§  Querying resources

§  Not Thread Safe!
§  Includes all objects fetched via resolver

34

Resource Resolver II

§  Central gateway for resource handling
§  Abstracts path resolution
§  Abstracts access to the persistence layer(s)
§  Configurable

§  Mappings (Multi site mgmt, beautify paths)

35

Resource Tree

36

/

Travel

Europe

misc

workflows images

Mounting Resource Providers

37

/

Travel

Europe

misc

workflows images

Resource
 Provider

[JCR]

Resource
 Provider

[DB]

Resource
 Provider

[File]

Resource
 Provider

[Mongo]

38

Scripting

Scripting Inside

§  It’s your choice
§  JSP, servlet, ESP, Scala
§  javax.script
§  own script handlers

§  Scripts stored in OSGi bundles or the resource tree
§  Scripts are searched at configured locations
§  Default servlets

§  JSON, XML
§  Error Handling

39

Script Resolving I

§  Path to script is build from…
§  Configured search paths (/apps, /libs)
§  Resource type converted to path (slingshot/Album)
§  Selector string (print/a4)
§  Request method & extension

§  GET à Extension (html)
§  Else -> Method (POST, PUT, DELETE…)

40

Script Resolving Example

41

§  URI: /Travel/Europe/Basel.print.a4.html
§  Resource: /Travel/Europe/Basel
§  Resource Type: slingshot:Album
§  Script for GET:

§  /apps/slingshot/Album/print/a4/html.*
§  Script for POST:

§  /libs/slingshot/Album/print/a4/POST.*

Script Resolving II

§  Scripts are searched by best matching
§  /apps/slingshot/Album/print/a4/html.*
§  /libs/slingshot/Album/print/a4/html.*
§  /apps/slingshot/Album/html.*
§  /libs/slingshot/Album/html.*

§  Resource has a type and a super type
§  Script inheritance
§  Default script (JSON...)

42

Sample JSP Script

43

<%@page import="org.apache.sling.api.resource.Resource,	
 org.apache.sling.api.resource.ValueMap" %><%	
%><%@taglib prefix="sling" uri="http://sling.apache.org/taglibs/sling/1.0" %><%	
%><sling:defineObjects/><%	
	
 final ValueMap attributes = resource.getValueMap();	
 final String albumName = attributes.get(”title”,Resource.getName());	
%><html>	
 <head>	
 <title>Album <%= albumName %></title>	
 </head>	
<body>	
 …

 <h2>Contained Albums</h2>	
 <%	
 for (final Resource current : resource.getChildren()) {	
 if (current.isResourceType(Constants.RESOURCETYPE_ALBUM)) {	
 %><sling:include resource="<%= current %>”/><%	
 }	
 }	
 %>

Resource-first Request Processing

§  ROA
§  URI decomposition
§  Resource resolving
§  Script resolving

§  Recursion
§  Flexible script search algorithm

44

45

OSGi

Runtime Requirements

§  Modularization – Modularity is key
§  Manage growing complexity
§  Support (dynamic) extensibility

§  Lifecycle management
§  Configuration management
§  Modules, services
§  Different distributions/feature sets
§  Dynamic system changes

46

OSGi in 5..ehm..1 Minute

§  Specification of a framework
§  Module concept (bundles) with lifecycle
§  Simple but powerful component model

§  Lifecycle management
§  Publish/Find/Bind service registration

§  Dynamic!
§  Uses the concept of bundles

47

An OSGi Bundle

§  Leverages the Java packaging mechanism: JAR files
§  Contains Java classes and resources
§  Additional meta-data
§  Implicit dependencies to other bundles
§  Package imports/exports
§  Semantic versioning of API

48

Services

§  OSGi offers an API to register services
§  Service is registered by its interface name(s)
§  Implementation is bundle private
§  Several components for same service possible (from different

bundles)
§  Bundles can find and use services

§  By interface names
§  With additional filters

49

The OSGi Core

§  Minimal but sufficient API for services
§  Minimal overhead: Good for simple bundles
§  No support for component management
§  No support for configuration management
§  Requires sometimes a lot of Java coding
§  Additional (optional) OSGi extensions

§  Declarative Service Specification
§  Configuration Admin Service Specification

50

OSGi Declarative Service Specification

§  Component model
§  Component lifecycle management
§  Publishing services
§  Consuming services
§  Default configuration
§  Support for Config Admin

51

Config Admin and Metatype

§  OSGi Config Admin
§  Configuration Manager
§  Persistence storage
§  API to retrieve/update/remove configs
§  Works with Declarative Services

§  OSGi Metatype Service
§  Description of bundle metadata
§  Description of service configurations

52

Apache Felix

§  Top-level project (March 2007)
§  Healthy and diverse community
§  OSGi R5 implementation
§  Framework (frequent releases)
§  Various interesting subprojects
§  Tools

§  Maven Plugins, Web Console

53

Contributions to Apache Felix

§  Declarative service implementation
§  Config admin implementation
§  Metatype implementation
§  Preferences implementation
§  Web console (!)
§  Maven SCR Plugin (!) and SCR tooling

54

Apache Sling Runtime

§  Uses Apache Felix
§  Runtime: Apache Sling Launchpad
§  Two flavors

§  Standalone Java Application
§  Web application

§  But Sling can be deployed in any OSGi framework!

55

Standalone Java Application

§  One single executable JAR file
§  Small Launcher
§  Starts OSGi Framework (Apache Felix)
§  Uses Jetty in an OSGi Bundle

56

Web Application

§  Extends Standalone Application
§  Replaces Main with a Servlet
§  Uses a bridge to connect Sling to the Servlet Container

57

Facts About Apache Sling

§  Sling API
§  Uses resource abstraction

§  Use JCR, MongoDB, Cassandra…
§  Highly modular and runtime configurable
§  Everything is a OSGi bundle

§  Deploy what you need!
§  Commons Bundles (Threads, Scheduling…)
§  OSGi Provisioning
§  Cloud discovery
§  Distributed eventing

58

Apache Sling – The Fun is Back

§  Web Framework
§  Java Content Repository

§  REST
§  Scripting inside

§  OSGi
§  Apache Open Source project
§  Check it out today!

59

