
October 2nd, 2015
Jiri Jetmar : jiri@apache.org
Paul Merlin : paulmerlin@apache.org

ApacheCon EU 2015

Apache Zest
COP – Composite Oriented Programming

§ What is Apache Zest ?

Agenda

“Genius is one percent inspiration and ninety–nine percent perspiration.”
Thomas A. Edison

§ Zest Libraries & App Building Strategies

§ Zest Community, Real World Apps & Outlook
§ Sample App – Live Coding Session

Apache Zesttm Fact Sheet

:: History
§ Apache Zest was born as Qi4j in 2007
§ Founded by Richard Öberg (EJBoss, later JBoss) and Niclas Hedhman
§ Version 1.0, 1.1 and 1.2 in 2010
§ Version 2.0 in 2013
§ Since beginning of 2015 a Top Level Apache Foundation Project
§ Current Version 2.1, first release of the Qi4j codebase under ASF. Still uses

the org.qi4j.* for backward compability
§ Version 3.0 in 2016 with lots of new features

2007 2009 2010 2013 2015 during
2016

Born of Qi4j Version 3.0

2nd Gen

Version 2.0

Apache Zest

Version 1.0

:: (Re-) Usage of proven patterns

Apache Zest Core

Apache Zesttm – It is about solving (business) problems

§ Zest is nothing new. It is a logical next step based on existing and proved
patterns and ideas

§ Zest is a Java implementation of the Composite Oriented Programming
(COP) pattern

§ COP is a programming model that allows the creation of rich domain models

:: Business problems centric approach
1) Start with the business problem
2) Use the terminology from Domain Driven Design (DDD)
3) Allow developers to implement the Domain Model

directly in code using that Terminology
4) Plug infrastructural building blocks that reflects the

needs and requirements

COP

DI AOP DDD …

Proven and well-known
patterns

COP fragments are used to
compose Applications

Figure 1 : COP – Patterns and Principles

Apache Zesttm – What kind of problems does Zest solve ?

:: Rich Domain Models
§ When it is required to manage a high number of states
§ Avoids growing codebase complexity
§ Separation of storage and index

:: Domain Model evolution

:: API & Data centric, integrative and technology independent Apps

§ When the ratio and frequency of Domain Model structural modifications is high
§ Simplifies the maintenance of code that interacts with the Domain Model
§ The Domain Model becomes “elastic”, refactorings are done on the source

code level by refactorable artifacts (e.g. Entities, Commands, Queries)

§ When it is required to provide a API (e.g. REST)
§ When there is a need to integrate external, 3th party Services on different

levels (API, RPC, REST, ..)
§ It is required to deal with large amounts of data

:: COP in one sentence

Apache Zesttm & COP Overview

“Composite Oriented Programming allows developers to work with
'fragments', smaller than classes, and 'compose' fragments into larger
'composites' which acts like the regular objects.”

:: COP & Apache Zest

§ The most basic element in Zest is the Fragment
§ A Composite is created by composing a number of Fragments
§ Mixins are Fragments that can handle method invocations
§ Modifiers are Fragments that modify method invocations (Decorator

pattern) – Constraints, Concerns, SideEffects

Niclas Hedhman

:: Fragments

Apache Zesttm Basic Fragments

Concern

Constraint

SideEffect

Mixin(1)
Property(1)
Property(n)
Association

Mixin(n)

Composite(1)

§ @Concerns intercept method calls
§ Allowed to modify arguments and i.) return values,

ii.) return with calling in chain, iii.) throws exceptions

§ @Constraint validates method arguments
§ Can have many Constraints per argument
§ Uses annotations to trigger
§ Cooperate with concern for failure actions

§ @SideEffects are called after a method call
has finished

§ Cannot change method arguments or return value
§ Cannot throw exceptions
§ Can inspect exceptions and return values
§ May be asynchronous

§ @Mixins implements Composite interfaces
§ A Mixin may implement one interface, many

interfaces or just some methods
§ May contain Composite state, such as Property and

Association instances
§ May be Composite private – not exposed in

Composite interface

Figure 2 : Composite Fragments

:: Application Structure

Apache Zesttm Structure Composition

§ Composites define the internals of objects
§ Explicit Composite meta types :

Value, Entity, Service and Transient

§ Composites reside in Modules

§ Modules can be grouped into Layers
§ One or more Layers per Application
§ Zero, one or more Modules per Layer

§ Visibility and dependency of Composites
between structures is controlled
§ Declaration of Visibility of Composites

Dependency and
Visibility

Module

Composite(1)
Composite(n)

Layer

Figure 3 : Structure Composition

Figure 4 : Application Structuring

Metatypes : Value,
Entity, Service and
Transient

§ What is Apache Zest ?

Agenda

§ Apache Zest Libraries & App Building Strategies

„We learn something every day, and lots of times it’s that what we learned the day
before was wrong.“

Bill Vaughan

§ Zest Community, Real World Apps & Outlook
§ Sample App – Live Coding Session

Apache Zesttm Core, Libraries and Extensions

Core	
 Runtime

Core	
 Extension	

SPI Core	
 API

Core	
 	
 I/O	
 APICore	
 	
 Functional	

API

Core	
 Bootstrap

Application	

Main	
 &	
 Test

Application	

Assembly

Application	

Code

Extensions Libraries

Your	
 App

Zest	

Extensions	

and	

Libraries

Zest	
 Core

Figure 5 : Zest Core, Libraries and Extensions

Apache Zesttm Library ecosystem (.. there is much more !)

Apache Zest
Core

Entity Store

Entity Index
ElasticSearch

InMemory

RDF

SQL

Redis

RIAK

Apache
JClouds

Solr

Metrics

Scheduling

Event
Sourcing

Caching

Data
Migration

Scala
integration

I/O Streaming
API

Functional
API

Configuration

SQL

HATEOAS
REST API

Re-Indexing

Circuit
Breaker

FileStore

…

Application Building – A bit „grey“ theory

Figure 6 : Top-Down Application Model

S(1)

F(1)

S(n)

F(n)

Clients

Channels

Service	

Model

Functional	

Model

State	
 	

Model

§ Defines the Message Exchange Patterns
(MEP‘s) e.g. In/Out

§ Technology independent but highly
influences the used technology

§ Defines a Service API (Contract)
§ Specifies the Data Exchange Format (e.g.

JSON) and communication schemas
(REST/RPC)

§ Provides a implementation for a Usecase
§ Interacts (CRUDF) with the state model

§ Application related Domain Model (DM)
§ Represents a state of a Usecase (e.g. a

Reservation has a state flow like new,
pending, canceled, expired)

§ Clients consumes the application state and
§ triggers state mutations (e.g. new Order)

Figure 7 : Concrete Zest-based Application structure

Application Building – The Zest way !

REST API Module

Domain Model Module

InMemory ES Module ElasticSearch EI Module

Filebased Configuration Module

Channels	

&	
 Services	

(REST)

Domain	

Layer

Infra.	

Layer

Config
Layer

Clients

Usecase Module
Usecase
Layer

curl	
 http://

…

§ What is Apache Zest ?

Agenda

„The only constant in the Universe is change“
Albert Einstein

§ Sample App – Live Coding Session

§ Zest Libraries & App Building Strategies

§ Zest Community, Real World Apps & Outlook

Sample App – Live Coding Session

$ git clone https://github.com/eskatos/zest-apache-con.git

§ What is Apache Zest ?

Agenda

§ Key Components, Building Blocks & Ecosystem

„To find yourself, think for yourself“
Socrates

§ Zest Community, Real World Apps & Outlook

§ Sample App – Live Coding Session

:: Community

Apache Zesttm Community

The current Zest developer community is rather small, but regroups
passionate individuals who are all convinced of Zest‘s merit and potential.
Over the years there has been 28 code contributors in total. There is always
lots to do and therefore the Zest community is looking forward to welcome
new developers.

The topics to contribute just right now are :

§ Discuss further developments on dev@zest.apache.org
§ Review and test sample applications
§ Review and contribute documentation
§ Code contribution areas : core, exts, libs, tools
§ We have some low hanging fruits like browser-based visualization of

application assemblies (tools), a feature toggling library, browser-based
dashboard for CircuitBreaker, EntityStores (exts, yes ! Writing an ES is
pretty easy) and much more …

… so do not wait, JOIN us right now !!

Who is using Apache Zesttm ?

http://smarpay.ch is a swiss company that offers mobile payment
services in the vending business. Apache Zest is used to offer backoffice services
like settlement and clearing for about 3k vending machines and about 350k mobile
users.

Productive

http://dieparkuhr.de is a german Startup that offers services around
the car parking business. Apache Zest is used for the entire backoffice with a large
number of services like User / Partner Management, Product Catalog, Reservation
and Scheduling System, Payment Services.

Not yet released

Streamflow is a case management system for Swedish
government departments.

Productive

IoT data analytics and visualization.
Bali	
 Automation Not yet released

further we know that Apache Zest is used is in a number of Fortune 500
companies as well as in a number of small companies. Zest is used in Trading, in
security related applications in the Oil and Energy Sector and even in Game
development.

…

:: Current Version is 2.1

Apache Zesttm Outlook

§ First release of the Qi4j codebase under the ASF umbrella. Still uses org.qi4j.*
for backward compability.

:: Outlook for 3.0 (in 2016)

§ Package change to org.apache.zest.*
§ Internals of Zest will be ported to Java 8
§ GeoSpatial Queries
§ Enhancements on the Entity Storage
§ Explicit Timeseries support
§ Moving Javascript library from rhino to nashorn
§ Configuration System enhancement (e.g. remote configuration)

Q & A

Thank you !
See you at https://zest.apache.org ! J

