
Async execution
with workqueues

Bhaktipriya Shridhar

About me

$whoami
● Outreachy Intern at the Linux Kernel with

Tejun Heo as my mentor.
● Working on updating Legacy workqueue

interface users in the Linux Kernel .
● Also, a 3rd year undergraduate student at IIIT

Hyderabad, India

Introduction

Workqueue is an asynchronous

execution mechanism which is widely

used across the kernel.

It's used for various purposes from

simple context bouncing to hosting a

persistent in-kernel service thread.

Workqueues

The design
➔ Work item a simple struct that holds

a pointer to the function

that is to be executed asynchronously.

➔ Work queue a queue of work items

➔ Worker threads Special purpose

threads that execute the functions

off the queue, one after the other.

➔ Workerpools A thread pool that is

used to manage the worker threads

Work item1 --> foo() Work item2 --> bar() Work item3 --> baz()

Workqueue

Worker thread

No queued work items Work item queued

Workqueue EMPTY

Worker thread IDLE

Workqueue QUEUED

Worker thread RUNNING

Presence in the
kernel

Past and present...

Due to its development history, there currently are two sets of
interfaces to create workqueues.

● Old: create[_singlethread|_freezable]_workqueue()
● New: alloc[_ordered]_workqueue()

$grep -r workqueue

Good to know...

Legacy workqueue
interface users are
scheduled for removal..

My Outreachy project
was to remove 280
legacy workqueue
interface users.

History

Before 2010 2010-present

Legacy Workqueue
interface

Concurrency
Managed
Workqueues

alloc_workqueue

alloc_ordered_workqueue

create_workqueue

create_singlethread_workqueue

create_freezable_workqueue

Legacy
Workqueue
interface

CPU CPU

CPUCPU

CPU CPU

CPUCPU

Thread

Thread

Single threaded workqueue Multi threaded workqueue

A single threaded workqueue had one
worker thread system-wide. A multi threaded workqueue had one

thread per CPU.

Legacy Workqueue
interface needed a
facelift...

Problems
➔ Proliferation of kernel threads

The original version of workqueues

could, on a large system, run the kernel

out of process IDs before user space

ever gets a chance to run.

➔ Deadlocks Workqueues could also

be subject to deadlocks if locking is not

handled very carefully

➔ Unnecessary Context switches

Workqueue threads contend with each

other for the CPU, causing more

context switches than are really

necessary.

➔

Concurrency Managed
Workqueues(CMWQ)-
A better solution

Indeed! With CMWQ...

Automatically regulates

worker pool and level of

concurrency so that

the API users don't need to

worry about such details.

Maintains

compatibility with

the original

workqueue API.

Uses per-CPU unified

worker pools shared by all

wq to provide flexible

level of concurrency on

demand without wasting a

lot of resource.

CMWQ : A closer look

The richer, more expressive and better

performing API...

Workqueue API
alloc_workqueue() allocates a wq.

Takes in 3 parameters:

➔ @name

➔ @flags

➔ @max_active

@name

is the name of the
wq.

1

@flags

control how work

items are assigned

execution resources,

scheduled and

executed.

2
WQ_UNBOUND

WQ_FREEZABLE

WQ_MEM_RECLAIM

WQ_HIGHPRI

WQ_CPU_INTENSIVE

@max_active

determines the

maximum number

of execution

contexts per

 CPU which can be

assigned to the

work items of a wq.

3

Example

with @max_active of

16, at most 16 work

items of the wq can

be

executing at the

same time per CPU.

Mappings

Identity conversions…..

create_workqueue(name)

alloc_workqueue(name,WQ_MEM_RECLAIM, 1)

alloc_ordered_workqueue(name, WQ_MEM_RECLAIM)

create_singlethread_workqueue(name)

create_freezable_workqueue(name)

alloc_workqueue(name,WQ_FREEZABLE | WQ_UNBOUND|WQ_MEM_RECLAIM, 1)

Examples most common
workqueue usages

Understanding from the context of the
legacy workqueue interface….

/drivers/platform/x86/asus-laptop.c

- asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
+ asus->led_workqueue = alloc_workqueue("led_workqueue", 0, 0);
 if (!asus->led_workqueue)
 return -ENOMEM;

alloc_workqueue()
(Vanilla)

Tip..

Used when the queued
work items can be run
concurrently.

No special flags
required

● led_workqueue is involved in updating LEDs queues &led->work per asus_led.

● The led_workqueue has multiple work items which can be run concurrently.

● The dedicated workqueue is kept so that the work items can be flushed as a group.

● Since it is not being used on a memory reclaim path, WQ_MEM_RECLAIM has not been set.

● Since there are only a fixed number of work items, explicit concurrency limit is unnecessary here.

alloc_workqueue() +
WQ_MEM_RECLAIM

/drivers/net/ethernet/synopsys/dwc_eth_qos.c
- lp->txtimeout_handler_wq = create_singlethread_workqueue(DRIVER_NAME);
+ lp->txtimeout_handler_wq = alloc_workqueue(DRIVER_NAME,
+ WQ_MEM_RECLAIM, 0); Tip..

Used when the work
items are on a memory
reclaim path.

● A dedicated workqueue has been used since the work item viz lp->txtimeout_reinit is involved in packet
TX/RX path .

● As a network device can be used during memory reclaim, the workqueue needs forward progress
guarantee under memory pressure. WQ_MEM_RECLAIM has been set to ensure this.

● Since there is only a single work item, explicit concurrency limit is unnecessary here.

alloc_workqueue() +
WQ_HIGHPRI

/drivers/gpu/drm/radeon/radeon_display.c
- radeon_crtc->flip_queue = create_singlethread_workqueue("radeon-crtc");
+ radeon_crtc->flip_queue = alloc_workqueue("radeon-crtc", WQ_HIGHPRI, 0);

Tip..

Used for workqueues
that queue work items
that require high priority
for execution..

Each hardware CRTC has a single flip work queue.
When a radeon_flip_work_func item is queued, it needs to be executed
ASAP because even a slight delay may cause the flip to be delayed by
one refresh cycle.

Hence, a dedicated workqueue with WQ_HIGHPRI set, has been used here
since a delay can cause the outcome to miss the refresh cycle.

Since there are only a fixed number of work items, explicit concurrency
limit is unnecessary here.

alloc_ordered_workqueue()

/drivers/net/caif/caif_hsi.c
- cfhsi->wq = create_singlethread_workqueue(cfhsi->ndev->name);
+ cfhsi->wq = alloc_ordered_workqueue(cfhsi->ndev->name, WQ_MEM_RECLAIM);

Tip..

Used when the queued
work items require strict
execution ordering...

An ordered workqueue has been used since workitems &cfhsi->wake_up_work
and &cfhsi->wake_down_work cannot be run concurrently.

Since the work items are being used on a packet tx/rx path, WQ_MEM_RECLAIM has been set to
guarantee forward progress under memory pressure.

System workqueue

/drivers/android/binder.c
- binder_deferred_workqueue = create_singlethread_workqueue("binder");

- queue_work(binder_deferred_workqueue, &binder_deferred_work);
+ schedule_work(&binder_deferred_work);

Tip..

Used when the work
items don’t take very
long and can be run
concurrently.

No special flags
required..

BEST option in these
cases!

● Binder is the RPC mechanism used on androids. The workqueue is being used to run deferred work for the
android binder.

● The "binder_deferred_workqueue" queues only a single work item and hence does not require ordering.

● Also, this workqueue is not being used on a memory reclaim path.

● Hence, it has been converted to use sytem_wq.

 drivers/staging/octeon/ethernet.c
 - queue_delayed_work(cvm_oct_poll_queue,
 - &cvm_oct_rx_refill_work, HZ);
+ schedule_delayed_work(&cvm_oct_rx_refill_work, HZ);

- queue_delayed_work(cvm_oct_poll_queue,
- &priv->port_periodic_work, HZ);
+ schedule_delayed_work(&priv->port_periodic_work, HZ);

- cvm_oct_poll_queue = create_singlethread_workqueue("octeon-ethernet");
- destroy_workqueue(cvm_oct_poll_queue);

+ cancel_delayed_work_sync(&cvm_oct_rx_refill_work);
+ cancel_delayed_work_sync(&priv->port_periodic_work);

System wq with multiple work items

● cvm_oct_poll_queue was used for polling operations.

● There are multiple work items per cvm_oct_poll_queue (viz. cvm_oct_rx_refill_work,
port_periodic_work) and different cvm_oct_poll_queues need not be be ordered. Hence, concurrency
can be increased by switching to system_wq.

● All work items are sync canceled so it is guaranteed that no work is in flight by the time exit path runs.

● With concurrency managed workqueues, use of dedicated workqueues can be replaced by system_wq.

/drivers/gpu/drm/ttm/ttm_memory.c
- glob->swap_queue = create_singlethread_workqueue("ttm_swap");

- flush_workqueue(glob->swap_queue);
- destroy_workqueue(glob->swap_queue);

- queue_work(glob->swap_queue, &glob->work);
+ schedule_work(glob->swap_queue, &glob->work);

+ flush_work(&glob->work);

system_long_wq

Tip..

Used when the queued
work items are long
running and don’t
require any special flags.

● swap_queue was created to handle shrinking in low memory situations.

● Earlier, a separate workqueue was used in order to avoid other workqueue tasks from being blocked
since work items on swap_queue spend a lot of time waiting for the GPU.

● Since these long-running work items aren't involved in memory reclaim in any way, system_long_wq
has been used.

● Work item has been flushed in ttm_mem_global_release() to ensure that nothing is pending when the
driver is disconnected.

Summary….

CMWQ extends workqueue such that it can

serve as robust async mechanism.

➔ Less to worry about causing

deadlocks around execution

resources.

➔ Far fewer number of kthreads.

➔ More flexibility without runtime

overhead.

➔ Richer and far more expressive

Benefits

Many thanks to....
Tejun Heo

Outreachy Team
Organizing Committee, LinuxCon NA 2016

Thank you!

Questions?

