

Open Source Development and Sustainability

A Look at the Bouncy Castle Project

How It Started

Early Days

● Started with a low level API as one of us was playing
around with the J2ME, built a provider on top of it.

● Added functionality for generating X.509 certificates.
● Then, of course, CRLs.
● Over the next couple of years, a few more algorithms

(e.g. Elliptic Curve), improvements and additions
(PKCS#12 support), and then...

Really Up and Running

More Features!

● Support for Cryptographic Message Syntax
● Support for Time Stamp Protocol
● Support for OpenPGP
● Attribute certificates
● A broader range of standards (paddings, algorithms)
● And more! But...

Suddenly, There is Complexity

And Realisation

● It's no longer just something you put on the Internet because
you found it useful and thought someone else might.

● People are actually relying on it.
● You even find out your bank is relying on it!
● Reviewing the situation in this light, one rapidly realises that as

good as everything is, it's one step from...

Chaos and Disaster

Principal Constraint - Time

● The issue isn't really ever money – it's actually time.
● Money does help free time up but is not a solution in itself.
● Lack of time can result in poor, or incomplete, test coverage,

hasty check-ins, incomplete functionality.
● Favourite brother to “lack of time” is interruption. Interruption on

second tier work is often and generally lengthy.
● Often open-source work has to be treated as second tier.

Other Constraints

● Equipment – faster computers, quicker turn around, servers for
continuous testing.

● Infrastructure – issues trackers, mailing lists, website, managing
distributions, download areas, 3rd party deployment (e.g. Maven
central).

● These days, the costs for most of these are modest, again the
issue is time, time to administer and time to make use of what
infrastructure you have.

Other Problems

● Ideally people outside the core team
should be able to contribute.

● Suddenly it takes as long, sometimes
longer, to review a contribution than
it would to do it locally.

● Large contributions become
especially problematic, particularly if
they involve standards such as
ASN.1, as even experienced
developers frequently make errors.

Biggest Danger

● Accrual of technical debt.
● A big issue in security orientated software as in some cases

things can go from being great to useless, possibly even
dangerous, overnight.

● Can also result in code which is difficult to maintain, again
making it difficult to respond to changes.

Then of Course...

● Peoples' lives can change
● External pressures can change
● Children, dogs, cats...
● The bank that's using your software suddenly becomes the one

that also holds your mortgage.
● Is this really what I signed up for?

So What to do?

Immediate Thoughts

● Rely on donations?
● Maybe a product company?
● Fund through consultancy work?
● Change license?
● Public/Professional version?
● Run?
● Before doing any of the above, need to consider what you want to

preserve as well.

In our Case

● Decided not to run.
● Wanted to preserve open source. Openness the best approach for

cryptography software.
● Donations unreliable. Not tax deductible in themselves.
● License fees, community/professional model not really an option. Can't do

“partial” cryptography, risk of introducing errors unacceptable.
● Contracting helps a bit, but have to be careful as it rarely means working

directly on the APIs. Doesn't buy much time.
● Product built on API approach also problematic, same issue as contracting.

The Solution

● Established a charity with ownership of the code base.
● Established a company for actual commercial work.
● Really had to find a way to make the APIs and the “product”

related.
● Only accepted short-term consulting targeted to the APIs.
● Started selling support contracts.

The Product

● Turned out to be support contracts.
● Question then is why would someone buy a support contract?
● Some people will buy one because they want to support the

project, or they actually know they need support.
● Most people need something tangible that's different from the

public offering.
● In our case, early access to certification work.

Things You Wrestle With

● “Freeloading” - is that what's really happening and what does it
mean?

● Do people really understand where the money goes when they buy
software?

● Turns out “not paying” and “freeloading” aren't always the same thing.
● That said, there are advantages in having a large user base for a

Crypto library if you can keep up with the users.
● These advantages also benefit paying customers.

Other Things That Change

● If something needs to get done, it cannot be treated as second
tier work.

● Different risks emerge, a lot of knowledge in the heads of too
few people.

● To deal with these it means the project needs to expand, and
people need to be paid.

● Not only have to manage the code, but manage the knowledge.

It's not just the code base we need to preserve!

On Reflection

● Many of the issues are really the same you face with any
business.

● If you need an income, you have to have something to trade for
cash.

● In commerce everything is quite simple, but even simple things
can seem quite difficult...

● If you are running, or setting up, an Open Source project you
should think about these things early.

Thanks for listening.

Any questions?

