Open Source Development and Sustainability

A Look at the Bouncy Castle Project




How It Started




Early Days

« Started with a low level API as one of us was playing
around with the J2ME, built a provider on top of it.

* Added functionality for generating X.509 certificates.
* Then, of course, CRLSs.

* Over the next couple of years, a few more algorithms
(e.qg. Elliptic Curve), improvements and additions
(PKCS#12 support), and then...



Really Up and Running




More Features!

Support for Cryptographic Message Syntax

Support for Time Stamp Protocol

Support for OpenPGP

Attribute certificates

A broader range of standards (paddings, algorithms)
And more! But...



Suddenly, There is Complexity




And Realisation

It's no longer just something you put on the Internet because
you found it useful and thought someone else might.

People are actually relying on it.
You even find out your bank is relying on it!

Reviewing the situation in this light, one rapidly realises that as
good as everything is, it's one step from...



Chaos and Disaster




Principal Constraint - Time

The issue isn't really ever money — it's actually time.
Money does help free time up but is not a solution in itself.

Lack of time can result in poor, or incomplete, test coverage,
hasty check-ins, incomplete functionality.

Favourite brother to “lack of time” is interruption. Interruption on
second tier work is often and generally lengthy.

Often open-source work has to be treated as second tier.



Other Constraints

« Equipment — faster computers, quicker turn around, servers for
continuous testing.

 Infrastructure — issues trackers, mailing lists, website, managing
distributions, download areas, 3 party deployment (e.g. Maven
central).

* These days, the costs for most of these are modest, again the
ISSue Is time, time to administer and time to make use of what
Infrastructure you have.



Other Problems

» |deally people outside the core team
should be able to contribute.

« Suddenly it takes as long, sometimes
longer, to review a contribution than
it would to do it locally.

« Large contributions become
especially problematic, particularly if
they involve standards such as
ASN.1, as even experienced
developers frequently make errors.




Biggest Danger

e Accrual of technical debt.

* A Dbig issue in security orientated software as in some cases

things can go from being great to useless, possibly even
dangerous, overnight.

e Can also result in code which is difficult to maintain, again
making it difficult to respond to changes.



Then of Course...

Peoples' lives can change
External pressures can change
Children, dogs, cats...

The bank that's using your software suddenly becomes the one
that also holds your mortgage.

Is this really what I signed up for?



So What to do?




Immediate Thoughts

Rely on donations?

Maybe a product company?
Fund through consultancy work?
Change license?
Public/Professional version?
Run?

Before doing any of the above, need to consider what you want to
preserve as well.



In our Case

Decided not to run.

Wanted to preserve open source. Openness the best approach for
cryptography software.

Donations unreliable. Not tax deductible in themselves.

License fees, community/professional model not really an option. Can't do
“partial” cryptography, risk of introducing errors unacceptable.

Contracting helps a bit, but have to be careful as it rarely means working
directly on the APIs. Doesn't buy much time.

Product built on APl approach also problematic, same issue as contracting.



The Solution

Established a charity with ownership of the code base.
Established a company for actual commercial work.

Really had to find a way to make the APIs and the “product”
related.

Only accepted short-term consulting targeted to the APIs.
Started selling support contracts.



The Product

Turned out to be support contracts.
Question then is why would someone buy a support contract?

Some people will buy one because they want to support the
project, or they actually know they need support.

Most people need something tangible that's different from the
public offering.

In our case, early access to certification work.



Things You Wrestle With

“Freeloading” - is that what's really happening and what does it
mean?

Do people really understand where the money goes when they buy
software?

Turns out “not paying” and “freeloading” aren't always the same thing.

That said, there are advantages in having a large user base for a
Crypto library if you can keep up with the users.

These advantages also benefit paying customers.



Other Things That Change

If something needs to get done, it cannot be treated as second
tier work.

Different risks emerge, a lot of knowledge in the heads of too
few people.

To deal with these it means the project needs to expand, and
people need to be paid.

Not only have to manage the code, but manage the knowledge.



It's not just the code base we need to preserve!




On Reflection

Many of the issues are really the same you face with any
business.

If you need an income, you have to have something to trade for
cash.

In commerce everything is quite simple, but even simple things
can seem quite difficult...

If you are running, or setting up, an Open Source project you
should think about these things early.



Thanks for listening.

Any guestions?



