
Copyright©2015 NTT corp. All Rights Reserved.

Teruaki Ishizaki

NTT Software Innovation Center

Sheepdog

Sheepdog is ready:
~Distributed block storage is turning from

experiment to commercial use~

2Copyright©2015 NTT corp. All Rights Reserved.

1. What is Sheepdog?

2. What are required for distributed storage?

3. Developments for commercial use

4. Performance test with SSD

5. Use Cases

6. Conclusions

Outline

3Copyright©2015 NTT corp. All Rights Reserved.

1. What is Sheepdog?

1. What is Sheepdog?

2. Why was Sheepdog developed?

2. What are required for distributed storage?

3. Developments for commercial use

4. Performance test with SSD

5. Use Cases

6. Conclusions

Outline

4Copyright©2015 NTT corp. All Rights Reserved.

• First developed as distributed block storage

• Sheepdog currently covers many use cases

• IaaS backend, FileServer, Cold Storage

• OpenStack Cinder/Glance cooperation

What is Sheepdog?

Sheepdog

Storage Pool
Volume

Commodity Server

Qemu (VM Volume)

iSCSI (File Server)

Object Storage

(Cold Storage)

Unified Storage System with Sheepdog

internal disk

volume operation

from OpenStack

5Copyright©2015 NTT corp. All Rights Reserved.

• NTT Laboratory released Sheepdog first as OSS

for experimental use (2009)

• Purpose was to verify that it was feasible to make

distributed block storage having following

features

• Durability

• Scalability

• Manageability

• Availability

Why was Sheepdog developed?

6Copyright©2015 NTT corp. All Rights Reserved.

1. What is Sheepdog?

2. What are required for distributed storage

1. Durability

2. Scalability

3. Manageability

4. Availability

3. Developments for commercial use

4. Performance test with SSD

5. Use Cases

6. Conclusions

Outline

7Copyright©2015 NTT corp. All Rights Reserved.

• Durability

• Scalability

• Manageability

• Availability

What are required for distributed storage?

We tried to use Sheepdog as commercial product

8Copyright©2015 NTT corp. All Rights Reserved.

• Durability

• Scalability

• Manageability

• Availability

What are required for distributed storage?

9Copyright©2015 NTT corp. All Rights Reserved.

• Virtual Volume is divided into fixed-size objects

• Each fixed-size objects is saved in multiple

servers as file, so each object is durable

• Replica and ErasureCode are available

Sheepdog’s Durability (1/2)

Sheepdog Cluster

VDI (Virtual Volume) - 1 GB
0 MB 4 MB 8 MB 16 MB 1024 MB

0 1 2 3

0 1 0 1 03 3 1 3

10Copyright©2015 NTT corp. All Rights Reserved.

Sheepdog’s Durability (2/2)

0

25

50

75

100

125

150

175

NAME: B

ID : 81

NAME: C

ID : 133

NAME: A

ID : 30

A

B

C

• Object placement Policy

• Consistent Hashing

• Hash key

• Calculated using server IP

or Volume Name/Index

• Replacement Cost

• Low in recovering redundancy

OBJ ID : 40

When its redundancy is three,

Servers A, B, C are selected for

storing object

NAME: D

ID : 152

When its redundancy is three and

Servers A is down, the object(ID:40)

is copied to Server D from Server B or C

11Copyright©2015 NTT corp. All Rights Reserved.

• Durability

• Scalability

• Manageability

• Availability

What are required for distributed storage?

12Copyright©2015 NTT corp. All Rights Reserved.

• Load Balance

• Clients using a different Volume can connect to the

respective Sheep Gateway (GW)

• I/O Performance

• If add servers, Sheep GW can send I/O requests to more

servers (Sheep Peers)

Sheepdog’s Scalability

Sheep GW

Sheep Peer

Sheep GW

Sheep Peer

Sheep GW

Sheep Peer

Client A

Server-0 Server-1 Server-2

Sheep GW

Sheep Peer

Server-N

……

I/O Node Scalability

Client N
Storage Head ScalabilitySheep process

consists of

GW and Peer

13Copyright©2015 NTT corp. All Rights Reserved.

• Durability

• Scalability

• Manageability

• Availability

What are required for distributed storage?

14Copyright©2015 NTT corp. All Rights Reserved.

• Auto Operation

• Relocation after adding a new server

• Recovering data redundancy after a server crash

• Returning data placement to the original server

after repairing a crashed server

• Volume Management

• Snapshot

• Clone

• Rollback

• Export Volume

• Import Volume

• Full/Incremental Backup

Sheepdog’s Manageability

15Copyright©2015 NTT corp. All Rights Reserved.

• It requires little time to get Snapshot/Clone

• Volume Metadata are stored in ‘Inode Object (Obj)’ file

• Inode Obj includes pointers to Data Obj

• Inode Obj is copied for obtaining Snapshot/Clone

and ID of Current VDI is changed

• Copy on Write (COW) is done after obtaining Snapshot/Clone

Internal Data of Sheepdog: Snapshot/Clone

VID: 01

null null

Inode Obj Obtain

Snapshot

Data Obj

VID: 01

null null

Inode Obj VID: 02

null null

Inode Obj

Current VDI (Volume) Current VDI (Volume)Snapshot

Data Obj

16Copyright©2015 NTT corp. All Rights Reserved.

• Durability

• Scalability

• Manageability

• Availability

What are required for distributed storage?

Sheepdog had Durability, Scalability and Manageability

But, Availability was not sufficient

17Copyright©2015 NTT corp. All Rights Reserved.

• No SPOF

• Single point of failure (SPOF) does not exist for using

Sheepdog as Qemu block

• SPOF exists as iSCSI (tgtd)

• Appropriate Volume’s Data Lifecycle

• Data Obj cannot be deleted until all VDIs of same family

have been deleted

It is the reason that we wanted to make Sheepdog’s

implementation simple first

Sheepdog’s Availability – Problems

The iSCSI storage head feature was an additional feature.

So, it was difficult to satisfy “No SPOF” feature for iSCSI head

without breaking Sheepdog’s initial design policy for Qemu block.

18Copyright©2015 NTT corp. All Rights Reserved.

1. What is Sheepdog?

2. What are required for distributed storage?

3. Developments for commercial use

• iSCSI multipath support

• Improved Garbage-Collection(GC) implementation of
Data Obj

4. Performance test with SSD

5. Use Cases

6. Conclusions

Outline

19Copyright©2015 NTT corp. All Rights Reserved.

We have developed for solving problems

to satisfy ‘Availability’

• iSCSI multipath support (v0.9.1~)

• Improved GC implementation of Data Obj (v0.9.0~)

Developments for commercial use

20Copyright©2015 NTT corp. All Rights Reserved.

We have developed for solving problems

to satisfy ‘Availability’

• iSCSI multipath support (v0.9.1~)

• Improved GC implementation of Data Obj (v0.9~)

Developments for commercial use

21Copyright©2015 NTT corp. All Rights Reserved.

• Inode Obj includes pointers to Data Objs

• Inode Obj is saved on Disks such as Data Obj

• pointers can be changed by write operation

• Write to blank block (No-Preallocation Volume)

• Write after obtaining snapshot/clone/rollback (COW)

• Storage Head has pointer info on memory

Internal data of Sheepdog: Inode

VID: 01

null null

Inode Obj VID: 01

null

Inode Obj

Write to

blank block

Data Obj

22Copyright©2015 NTT corp. All Rights Reserved.

• Act tgtd and Sby tgtd have pointer info of Inode

Obj on memory

• Tgtds reads Inode Obj from Sheepdog when

connecting Sheepdog Volume for creating iSCSI

LUN

• Sby tgtd cannot detect if Act tgtd has changed

pointers in Inode Obj

iSCSI multipath Problem

sheep

tgtd

sheep

tgtd

sheep

tgtd

1.read inode obj from disk

when connecting to the VDI
2.tgtds have inode info on mem

3.Act write to Sheepdog VDI

with changing inode info

4.inode info of Act is changed

5.inode info is written back to disk

Virtual Volume

(Sheepdog VDI)

Act Sby

Client

invalid pointers

6.Sby’s pointers info is invalid

23Copyright©2015 NTT corp. All Rights Reserved.

tgtd

• Sheepdog involves MSI Protocol for Inode Obj

cache coherency between tgtds

• Modified

• Shared

• Invalidated

• tgtd reloads Inode if node status of running tgtd is

Invalidated

Keeping tgtds Coherent

step/status Server A Server B Server C

initial (none) (none) (none)

sheep

tgtd

sheep

tgtd

sheep

modified (none)

shared shared

modified invalidated
write to Act

(write inode)

Sby connect

(load inode)

Act connect

(load inode)

read from SbyB

(reload inode)
shared shared

(none)

shared

invalidated

invalidated

Virtual Volume

(Sheepdog VDI)

SV A SV B SV C

Client

24Copyright©2015 NTT corp. All Rights Reserved.

• Now we can use iSCSI multipath feature

• Support Act-Sby only

• Client must use multipath-tool of Windows or Linux

• Sheepdog v0.9.1 or later

• tgtd v1.0.51 or later

• option “-l” is needed for cluster format

No SPOF for using Sheepdog as iSCSI

sheep

tgtd

sheep sheep

Virtual Volume

(Sheepdog VDI)

tgtd

sheep/iSCSI Server

client

VDI can be connected

by only one tgtd

Previous Version

sheep

tgtd

sheep sheep

tgtd

sheep/iSCSI Server

client

iSCSI multipath Support

Act Sby
can now do failover

Virtual Volume

(Sheepdog VDI)

VDI can be connected

by multiple tgtds

VDI can be connected

by multiple tgtds

25Copyright©2015 NTT corp. All Rights Reserved.

We have developed for solving problems

to satisfy ‘Availability’

• iSCSI multipath support (v0.9.1~)

• Improved GC implementation of Data Obj (v0.9~)

Developments for commercial use

26Copyright©2015 NTT corp. All Rights Reserved.

• We must know whether Data Obj is referenced or

not for deleting it

• Data Obj may be referenced by different VDIs of same family

(snap/clone)

• If each Data Obj has reference count simply,

Snapshot/Clone operation will be very slow

• Need to increase reference count of all Data Objs pointed by

base VDI and write all Data Objs to Disk

Difficulty of Data Obj’s lifecycle

VID: 01

null null

Inode Obj VID: 02

null null

Inode Obj

Current VDI (Volume)Snapshot

Data Objshared Data Obj

referenced by only Current VDI

27Copyright©2015 NTT corp. All Rights Reserved.

Sheepdog involves
Generation Reference Count algorithm

snap0

snap1

current

clone0

child

parent child
parent

VID: 01

VID: 02

VID: 03

VID: ff

VDI Family

parent child Data A

referenced by only snap1

• Previous problem(Sheepdog v0.8)

• Data Objs could not be deleted until all members of VDI

family were deleted

→ It wastes disk space

• Sheepdog v0.9.0 or later

• Data Obj is deleted after all VDIs refering to it have deleted

• Low cost for obtaining Snapshot/Clone

• https://github.com/sheepdog/sheepdog/blob/master/doc/object -reclaim.txt

Sheepdog v0.8 or before

•Data A is deleted after All member of VDI

family have deleted

Sheepdog v0.9 or later

•Data A is deleted after snap1 has deleted

https://github.com/sheepdog/sheepdog/blob/master/doc/object-reclaim.txt

28Copyright©2015 NTT corp. All Rights Reserved.

• Durability

• Replica/Erasure Code

• Scalability

• Load Balance

• I/O Node Scalability

• Manageability

• Auto Operation

• Volume Management

• Availability

• No SPOF

• Appropriate Volume’s Data Lifecycle

Now Sheepdog is ready

Sheepdog satisfies all features for block storage and

is ready for commercial use from v0.9.1 or later

29Copyright©2015 NTT corp. All Rights Reserved.

1. What is Sheepdog?

2. What are required for distributed storage?

3. Developments for commercial use

4. Performance test with SSD

1. FIO test for Qemu Block

2. pgbench for Qemu Block

5. Use Cases

6. Conclusions

Outline

30Copyright©2015 NTT corp. All Rights Reserved.

All test cases were done on the same Environment

• Storage Software
• Sheepdog-0.9.1 (2 cases: 3 Replica, 4:2 Erasure Code)

• Ceph-0.94.0 (1 case: 3 Replica)

• Server Environment
• 9 Storage node cluster, connected by10GbE

• 3 nodes of cluster are zookeeper (Sheepdog) or monitor(Ceph)
servers

• 1 Test Client VM is working in 1 node of cluster

• each node has 1 HDD (OS/VM OS) and 1 SSD (Storage)

• Test Client Environment
• KVM VM (qemu-2.2.1 + kernel-3.1.0-229.1.2.el7)

• Client OS is CentOS7.1

• Connect to Storage with own Qemu block driver

Test Environment

31Copyright©2015 NTT corp. All Rights Reserved.

• FIO Base Setting: fio-2.2.6

• runtime: 60 sec

• ramp_time: 10 sec

• ioengine: libaio (asyncronous)

• iodepth: 32

• fsync: 0

• direct: 1

• invalidate: 1

• numjobs: 8

• Test Pattern

• sequential read/random read/sequential write/random write

• block size: 4 KB, 64 KB, 512 KB, 1024 KB

Performance comparison: FIO

32Copyright©2015 NTT corp. All Rights Reserved.

FIO test: Qemu Read IOPS

• change block size: 4 KB, 64 KB, 512 KB, 1024 KB

33Copyright©2015 NTT corp. All Rights Reserved.

FIO test: Qemu Read Throughput

• change block size: 4 KB, 64 KB, 512 KB, 1024 KB

34Copyright©2015 NTT corp. All Rights Reserved.

FIO test: Qemu Rand Read IOPS

• change block size: 4 KB, 64 KB, 512 KB, 1024 KB

35Copyright©2015 NTT corp. All Rights Reserved.

FIO test : Qemu Rand Read Throughput

• change block size: 4 KB, 64 KB, 512 KB, 1024 KB

36Copyright©2015 NTT corp. All Rights Reserved.

FIO test : Qemu Write IOPS

• change block size: 4 KB, 64 KB, 512 KB, 1024 KB

It is seemed to ClientVM that IOPS is 80,000,

but actually IOPS is 16,000 for Sheep GW.

Some requests are collected to 1 large request(≒20KB)

37Copyright©2015 NTT corp. All Rights Reserved.

FIO test: Qemu Write Throughput

• change block size: 4 KB, 64 KB, 512 KB, 1024 KB

38Copyright©2015 NTT corp. All Rights Reserved.

FIO test: Qemu Rand Write IOPS

• change block size: 4 KB, 64 KB, 512 KB, 1024 KB

39Copyright©2015 NTT corp. All Rights Reserved.

FIO test: Qemu Rand Write Throughput

• change block size: 4 KB, 64 KB, 512 KB, 1024 KB

40Copyright©2015 NTT corp. All Rights Reserved.

The I/O pattern of all tests are asyncronous I/O

• Sheepdog is superior in all cases of 4-KB blocks
⇒ Sheepdog is better for R/W IOPS

• Sheepdog-Replica is superior in all Read cases of
large blocks
⇒ Better read throughput

• Sheepdog-EC is superior in all Write cases of
large blocks
⇒ Better write throughput

• Ceph is better for Read/Write performance balance
of large blocks

Performance Test Summary: FIO

41Copyright©2015 NTT corp. All Rights Reserved.

• pgbench Base Setting: PostgreSQL-9.4.1

• max_connections: 100 (default)

• shared_buffer: 256 MB

• autovacuume: off

• Test Pattern

• Preprocessing(initialization)
createdb pgbench

pgbench –I –s 2000 pgbench –q (scale factor: 2000)

• Test Scenario

• TPC-B
• UPDATE -> SELECT -> UPDATE -> UPDATE -> INSERT

• SELECT only

• Client num: 4, 8, 16, 32

• runtime: 300 seconds

Performance comparison: pgbench

42Copyright©2015 NTT corp. All Rights Reserved.

pgbench: Qemu TPC-B

• change client number: 4, 8, 16, 32

43Copyright©2015 NTT corp. All Rights Reserved.

pgbench: Qemu SELECT

• change client number: 4, 8, 16, 32

44Copyright©2015 NTT corp. All Rights Reserved.

• Sheepdog VM volume works better than Ceph for

TPC-B and SELECT work loads

• Pgbench Performance results are dependent on

the environment, so, please verify the results on

your environment

Performance Test Summary: pgbench

45Copyright©2015 NTT corp. All Rights Reserved.

1. What is Sheepdog?

2. What are required for distributed storage?

3. Developments for commercial use

4. Performance test with SSD

5. Use Cases

• NTT Data Corporation

• Alibaba Group

6. Conclusions

Outline

46Copyright©2015 NTT corp. All Rights Reserved.

• NTT Data Open Solutions – Block Storage

• Use case: Block Storage Solution

• iSCSI Storage

• OpenStack Block Storage – Qemu Block for Private Cloud

• Product Summary (Japanese Page)

• http://www.nttdata.com/jp/ja/news/release/2014/101401.html

• First Commercial Product of Sheepdog in NTT

Group

NTT Data Corporation

http://www.nttdata.com/jp/ja/news/release/2014/101401.html

47Copyright©2015 NTT corp. All Rights Reserved.

• Lambert

• Use case: Cold Data Storage

• Sheepdog is used as Object Storage

• Lambert consists of many Sheepdog clusters

• External Tool handles Sheepdog clusters and manages cold

data placement

• Details of Lambert

• http://events.linuxfoundation.org/sites/events/files/slides/LFVaul

t2015_Alibaba.pdf

• First Use Case for very large Object Storage

Alibaba Group

http://events.linuxfoundation.org/sites/events/files/slides/LFVault2015_Alibaba.pdf

48Copyright©2015 NTT corp. All Rights Reserved.

1. What is Sheepdog?

2. What are required for distributed storage?

Developments for commercial use

3. Performance test with SSD

4. Use Cases

5. Conclusions

Outline

49Copyright©2015 NTT corp. All Rights Reserved.

• Sheepdog is ready for commercial use

• Durability

• Scalability

• Manageability

• Availability

• It can be used for larger or more critical systems

• Sheepdog v1.0 is coming soon

• More information on Sheepdog

• web site: http://sheepdog.github.io/sheepdog

• repository: https://github.com/sheepdog/sheepdog

Conclusions

http://sheepdog.github.io/sheepdog
https://github.com/sheepdog/sheepdog

50Copyright©2015 NTT corp. All Rights Reserved.

Appendix

51Copyright©2015 NTT corp. All Rights Reserved.

• Machine: Fujitsu PRIMERGY RX200 S8 * 9

• Hostname

• sds04 – sds12

• CPU

• Intel Xeon CPU E5-2620 v2 @ 2.10GHz

• 2CPU*6core*HT=24 logical cores

• Memory

• DDR3 4GB 1600MHz * 8, 32GB total

• HDD

• SATA 250GB 7.2krpm * 3 (system area with RAID0)

• Samsung 850pro SSD 250GB * 1 (data area)

• NICs

• Intel 82599ES SFP+ (10Gbps) for traffic of storage

• Intel I350 (1Gbps) for management

• RAID card

• LSI MegaRAID SAS 2208
• 1GB cache, 6Gbps bandwidth

• Write through, no read ahead, Enable Drive Cache

Hardware configuration

52Copyright©2015 NTT corp. All Rights Reserved.

fio -rw=read -numjobs=8 –name=test -bs=1M -size=1G -fsync=0

-direct=1 -invalidate=1 -ioengine=sync -iodepth=32

-iodepth_batch=32 -group_reporting

--output-format=json -directory=/sheepdog

-create_only=1 -unlink=0

FIO command parameter

• Pre-Create files for seq-read/rand-read test

• FIO test command

fio -rw=${_RW} -bs=${_BLOCK_SIZE}

-numjobs=8 -name=test -size=1G -fsync=0 -runtime=60

-direct=1 -invalidate=1 -ioengine=libaio -iodepth=32

-iodepth_batch=32 -group_reporting --output-format=json

-directory=${MOUNT_PATH}

echo 3 > /proc/sys/vm/drop_caches

• Drop Page Cache for each Client VM and all Storage Nodes before tests

53Copyright©2015 NTT corp. All Rights Reserved.

pgbench command parameter

./createdb pgbench

./pgbench -i -s 2000 pgbench -q

• Create DB for benchmark

./pgbench -c ${_NUM_JOBS} -T 300 -r pgbench

• TPC-B senario test (change client number: 4, 8, 16, 32)

./pgbench -S -c ${_NUM_JOBS} -T 300 -r pgbench

• SELECT senario test (change client number: 4, 8, 16, 32)

54Copyright©2015 NTT corp. All Rights Reserved.

Sheepdog boot parameter

• Run on every node with different IP address
sheep -p 7000 -l dir=/var/log/sheep level=info

-c zookeeper:192.168.2.17:2181,192.168.2.18:2181,192.168.2.19:2181

-b <server_ip> -y <server_ip> /data/sheepdog

• Cluster initialization for erasure coding

dog cluster format –a 192.168.2.19 –c 4:2

• Cluster initialization for 3 replication

dog cluster format –a 192.168.2.19 -c 3

55Copyright©2015 NTT corp. All Rights Reserved.

Configuration of ceph (ceph.conf)

[global]

fsid = 6744ad0a-061d-4822-be71-467e525b4643

mon_initial_members = sds12, sds11, sds10

mon_host = 192.168.2.22,192.168.2.21,192.168.2.20

auth_cluster_required = cephx

auth_service_required = cephx

auth_client_required = cephx

filestore_xattr_use_omap = true

osd_pool_default_size = 3

osd_pool_default_pg_num = 512

osd_pool_default_pgp_num = 512

public_network = 192.168.2.0/24

cluster_network = 192.168.2.0/24

[osd]

osd_journal_size = 1000

[osd.sds04]

public_addr = 192.168.2.14

cluster_addr = 192.168.2.14

[osd.sds05]

public_addr = 192.168.2.15

cluster_addr = 192.168.2.15

[osd.sds06]

public_addr = 192.168.2.16

cluster_addr = 192.168.2.16

[osd.sds07]

public_addr = 192.168.2.17

cluster_addr = 192.168.2.17

[osd.sds08]

public_addr = 192.168.2.18

cluster_addr = 192.168.2.18

[osd.sds09]

public_addr = 192.168.2.19

cluster_addr = 192.168.2.19

[osd.sds10]

public_addr = 192.168.2.20

cluster_addr = 192.168.2.20

[osd.sds11]

public_addr = 192.168.2.21

cluster_addr = 192.168.2.21

[osd.sds12]

public_addr = 192.168.2.22

cluster_addr = 192.168.2.22

[mon.sds12]

host = sds12

addr = 192.168.2.22:6789

[mon.sds11]

host = sds11

addr = 192.168.2.21:6789

[mon.sds10]

host = sds10

addr = 192.168.2.20:6789

56Copyright©2015 NTT corp. All Rights Reserved.

ceph-deploy new sds12 sds11 sds10

modify ceph.conf

ceph-deploy install sds04 sds05 sds06 sds07 sds08 sds09 sds10 sds11 sds12

ceph-deploy mon create-init ial

ceph-deploy mon create sds12 sds11 sds10

ceph-deploy gatherkeys sds12 sds11 sds10

ceph-deploy osd prepare sds12:/data/ceph/osd sds04:/data/ceph/osd sds05:/data/ceph/osd

sds06:/data/ceph/osd sds07:/data/ceph/osd sds08:/data/ceph/osd

sds09:/data/ceph/osd sds10:/data/ceph/osd sds11:/data/ceph/osd

ceph-deploy osd activate sds04:/data/ceph/osd sds05:/data/ceph/osd sds06:/data/ceph/osd

sds07:/data/ceph/osd sds08:/data/ceph/osd sds09:/data/ceph/osd

sds10:/data/ceph/osd sds11:/data/ceph/osd sds12:/data/ceph/osd

ceph-deploy admin sds12 sds04 sds05 sds06 sds07 sds08 sds09 sds10 sds11

(for each server)

ssh sds04 chmod +r /etc/ceph/ceph.client .admin.keyring

ceph osd pool create ceph-qemu 512 512 replicated

ceph osd pool set ceph-qemu size 3

ceph osd tree

ceph auth get-or-create client.l ibvirt mon 'allow r' osd 'allow class -read object_prefix rbd_children, allow rwx

pool=ceph-qemu‘

(cont…)

Procedure of creating volume of Ceph (1/2)

57Copyright©2015 NTT corp. All Rights Reserved.

cat > secret.xml <<EOF

<secret ephemeral='no' private='no'>

<usage type='ceph'>

<name>client.libvirt secret</name>

</usage>

</secret>

EOF

virsh secret-define --file secret.xml

⇒ UUID for secret info is out (437e43e1-7b0b-429c-bb34-78f07d859d75)

ceph auth get-key client.libvirt | tee client.libvirt.key

virsh secret-set-value --secret 437e43e1-7b0b-429c-bb34-78f07d859d75 --base64 $(cat client.libvirt.key)

cat > ceph-volume.xml <<EOF

<disk type='network' device='disk'>

<driver name='qemu' cache='none'/>

<auth username='libvirt'>

<secret type='ceph' uuid='437e43e1-7b0b-429c-bb34-78f07d859d75 ' />

</auth>

<source protocol='rbd' name='ceph-qemu/sds12-vm01'>

<host name='sds12' port='6789'/>

</source>

<target dev='vdb' bus='virtio'/>

<address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>

</disk>

EOF

virsh attach-device testVM ceph-volume.xml

Procedure of creating volume of Ceph (2/2)

58Copyright©2015 NTT corp. All Rights Reserved.

Libvirt XML for Test Volume

<disk type='network' device='disk'>

<driver name='qemu' cache='none'/>

<source protocol='sheepdog' name='sds12-vm01'><host name='192.168.2.22' port='7000'/></source>

<target dev='vdb' bus='virtio'/><address type='pci' domain='0x0000' bus='0x00' slot='0x07'

function='0x0'/>

</disk>

<disk type='network' device='disk'>

<driver name='qemu' cache='none'/>

<auth username='libvirt'>

<secret type='ceph' uuid='437e43e1-7b0b-429c-bb34-78f07d859d75'/>

</auth>

<source protocol='rbd' name='ceph-qemu/sds12-vm01'>

<host name='sds12' port='6789'/>

</source>

<target dev='vdb' bus='virtio'/>

<address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/>

</disk>

• Sheepdog Volume

• Ceph Volume

