QEMU CPU Hotplug

Bharata B Rao, IBM India

<bharata@linux.vnet.ibm.com>

David Gibson, Red Hat Australia

<dgibson@redhat.com>

lgor Mammedov, Red Hat Czech Republic

<imammedo@redhat.com>
Q@ redhat

<|||

KVM Forum 2016


mailto:bharata@linux.vnet.ibm.com
mailto:dgibson@redhat.com
mailto:imammedo@redhat.com

Guest CPU Hot-plug

e Add/remove virtual CPUs in a VM

o Guest is running
o No reboot

e Scale guest compute capacity on demand
e Useful for vertical scaling in Cloud

e Requires guest awareness

o Protocol depends on platform
m ACPI (x86 & ARM)
m PAPR events (POWER)



What we had (v2.6 and earlier)

e cpu-add QMP command
o  Only implemented on x86
o No unplug
e No generic CPU hot-plug model
o cpu-add always added a single vCPU thread
o Not compatible with hotplug protocol on some platforms
o cpu-add “out of order” breaks migration
e Not based on standard -device / device add interfaces
o Doesn’t match hotplug model used for other devices
e No way to query for possible CPUs

o Requires assumptions about how -smp is interpreted
o Not valid for all platforms



What we wanted

Consistent QOM model for CPUs
CPU hotplug with standard device add
Support for many architectures / targets
Support for many machine types

o pc/q35
o pseries
o S390

o ARM / aarch64?

Possible CPUs introspection
o Management needs to know what to device_add



Hotplug Granularity

Thread

e Matches cpu-add
o  Existing guest tools
o  Existing management
e Most flexible

e Impossible on ‘pseries’
o  Guest events have no
way to express this

Core

e Matches PAPR model

e Little reason on other
platforms

Socket

Matches hardware
o  Probably...

Inflexible

“Socket” may be artificial
o  pseries
o  aarch64 virtual platform



Hotplug Granularity (2)

e Machine type defines hotplug granularity

o Thread
m pc/g35 (matches ACPI protocol)
m  s390
o Core
m pseries (matches PAPR protocol)
o Socket

m  Nothing yet (but matches plausible real hardware)
o  Multi-chip module?
o Daughterboard?



CPU QOM Model

e VCPU thread is a QOM object (already)
o Couldn’t be user instantiated

e Hotpluggable CPU module is also QOM object
o Added with -device or device_add

> Sometimes the same object.. > ..sometimes not
O  thread granularity O  other granularity

(gemu) info qom-tree (gemu) info qom-tree
/machine (pc-1440fx-2.7-machine) /machine (pseries-2.7-machine)
/peripheral (container) /peripheral (container)

/cpul (gemu64-x86_64-cpu) /corel (POWER8SE_v2.1-spapr-cpu-core)
/thread[@] (POWER8E_v2.1-powerpc64-cpu)




CPU QOM Model (2)

e Could be additional QOM objects

o Sockets, modules etc.
o Decided by machine type
o No examples yet
e Machine type converts -smp and -cpu into initial QOM objects
o But could be extended for heterogeneous boards

e Abstract cpu-core class introduced

o sPAPR uses this as base class for sPAPR specific types
o ..can be re-used by future platforms



CPU Type Hierarchy Examples

pc (x86) type hierarchy pseries type hierarchy

o) (epveors)
i !

[ x86_64-cpu ] [spapr-cpu-core]

! !

[ gemu64-x86_64-cpu ] [ POWERSE_v2.1-spapr-cpu-core ]




The new CPU device semantics

e -device CPU-device-type[,socket-id=][,core-id=][,thread-id=]
o CPU-device-type is machine-dependent
e sSPAPR
o -device POWERS8 v2.0-spapr-cpu-core,core-id=8
m Only core-id needs to be specified
e X86
o -device gemu64-x86 64-cpu,socket-id=2,core-id=0,thread-id=0
m Need to specify thread-id, core-id and socket-id



Discovery and introspection

How would we know what CPU objects to create ?

e query-hotpluggable-cpus
o  QMP interface
o Lists information management needs to hot plug:
m Device type for device_add
e Depends on machine type and “-cpu cpu_model”
e Might depend on other parameters
m Device properties for each CPU
e thread-id, core-id, socket-id, node-id
e Future machine types might use more
o Lists both initial and possible CPUs

e info hotpluggable-cpus (HMP wrapper)



Demonstration

e Example of info hotpluggable-cpus and device add device del
e Pseries with multiple SMT modes
e X86



sPAPR PowerPC semantics - single threaded guest

-smp 1, maxcpus=2

(gemu) info hotpluggable-cpus
Hotpluggable CPUs:
type: "host-spapr-cpu-core”
vcpus_count: "1"
CPUInstance Properties:
core-id: "1"
type: "host-spapr-cpu-core”
vcpus_count: "1"
gom_path: "/machine/unattached/device[1]"
CPUInstance Properties:
core-id: "@"
(gemu) device_add host-spapr-cpu-core,id=core1,core-id=1
(gemu) device_del core1



sPAPR PowerPC semantics - SMT4 guest

-smp 4,cores=2,threads=4,maxcpus=8 -cpu POWERSE

(gemu) info hotpluggable-cpus
Hotpluggable CPUs:
type: "POWER8E_v2.1-spapr-cpu-core"
vcpus_count: "4"
CPUInstance Properties:
core-id: "4"
type: "POWER8E_v2.1-spapr-cpu-core”
vcpus_count: "4"
gom_path: "/machine/unattached/device[1]"
CPUInstance Properties:
core-id: "@"
(gemu) device_add POWER8SE_v2.1-spapr-cpu-core,id=corel,core-id=4
(gemu) device_del core1



sPAPR PowerPC semantics - SMT8 guest

-smp 8,cores=2,threads=8, maxcpus=16

(gemu) info hotpluggable-cpus
Hotpluggable CPUs:
type: "host-spapr-cpu-core”
vcpus_count: "8"
CPUInstance Properties:
core-id: "8"
type: "host-spapr-cpu-core”
vcpus_count: "8"
gom_path: "/machine/unattached/device[1]"
CPUInstance Properties:
core-id: "@"
(gemu) device_add host-spapr-cpu-core,id=corel,core-id=8
(gemu) device_del core1



Problems: KVM and CPU removal

e KVM doesn't support destroying vCPU instances

o ... and allowing it to do so looks difficult

e Alternative approach

o Destroy CPU object at QEMU side
o Keep KVM vCPU instance in “parked” state
o Re-use “parked” KVM vCPU instance when the same CPU is next plugged



Problems: Handling errors during hotplug

e CPU realize()

o Can cleanly report errors and abort
o .. but can'’t easily check machine imposed constraints

e Machine plug() handler
o CPU is already realized
m Tricky or impossible to rollback
m Too late to set additional CPU properties

e New: Machine pre_plug() handler
o Called before realize()
o Validates properties against machine model
m Can also set extra properties determined by machine
o Detects problems early, no rollback



Problems: CPU Options

e Many platforms have optional CPU properties
o X86 available features
o POWER compatibility mode
e Usually need to be the same for all CPUs
o So adding to every device_add is tedious and redundant
-global provides a natural way to set properties uniformly
o  Works for both initial and hot added CPUs
o  Allows flexibility if we allow non-uniform CPUs in future
Need to convert -cpu options to -global properties

o  Where this is done depends on platform
o Needs further cleanup



Problems: Migration nightmares

e cpu_index was allocated in cpu_exec init()
o Value depended on CPU instantiation order
o Used as migration instance id

e Migration requires matching instance ids on source and destination
o No reasonable way to ensure identical hotplug / unplug order on source and destination
o  Out of order hotplug or unplug would break migration afterwards
m Already broken on x86 with cpu-add

e Devised a stable cpu_index scheme with minimal impact on archs
o Machine type can generate cpu_index values before CPU realize()
o To support CPU hotplug, machines should assign stable values manually
m SPAPR uses core-id to generate thread cpu_index values
o Machines that don't support CPU hotplug can still use old auto-assignment
m  Minimal changes until necessary



Future work: NUMA

e Management has to guess which NUMA nodes hotplugged CPUS will be in
o Already a problem with cpu-add

e -numa command line option isn’t enough
o Management can’t know CPU indexes to use until it has run query-hotpluggable-cpus

e Possible solution:
o QMP command to assign a CPU object (socket / core / thread) to a NUMA node at run time
m Start QEMU in stopped mode ‘-S’
m Use query-hotpluggable-cpus to get list of possible cpus
m  Assign NUMA nodes to each CPU
m Start guest with ‘continue’



Future Work: More machine types

e S390

o Recently implemented cpu-add, move to new model

e ARM//aarcht4

o Some machine types will support hotplug

e powernv

o In-progress “bare metal” (not paravirtualized) POWER machine
o May require interactions with other devices on the physical CPU chip

e Prerequisites:
o cpu_exec_init() and cpu_exec_exit() need to be called at realize / unrealize
m Already done for x86, s390 and ppc
m Necessary for handling failures
m Necessary for manual cpu_index allocation



Future work: POWER specific

e Clean up device tree creation:
o Device tree represents cores, not threads
o  Currently constructed by 1st thread
o Should construct from core device, now that it's a real object

e DRC state migration
o “Dynamic Reconfiguration Connector”
m Paravirtual abstraction to communicate hotplug state with guest
o Not all state currently migrated
m  Concurrent migration and hotplug events can break



Future work: Other

e libvirt support for new CPU hotplug interface (Peter Krempa)
o First, existing libvirt APl in terms of new QEMU API
m Limited, but helps existing tools
o Then, new libvirt API
m More flexible
e -smp rework (Andrew Jones)
o Convert -smp,sockets=S,cores=C,threads=T into machine properties
o Removes reliance on global variables for topology
o Allows machine types to define or override -smp parsing
e Support boot cpu removal
o Assorted places in QEMU assume the existence of CPU 0
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