
QEMU CPU Hotplug
Bharata B Rao, IBM India

<bharata@linux.vnet.ibm.com>
David Gibson, Red Hat Australia

<dgibson@redhat.com>
Igor Mammedov, Red Hat Czech Republic

<imammedo@redhat.com>

KVM Forum 2016

mailto:bharata@linux.vnet.ibm.com
mailto:dgibson@redhat.com
mailto:imammedo@redhat.com

Guest CPU Hot-plug
● Add / remove virtual CPUs in a VM

○ Guest is running
○ No reboot

● Scale guest compute capacity on demand
● Useful for vertical scaling in Cloud
● Requires guest awareness

○ Protocol depends on platform
■ ACPI (x86 & ARM)
■ PAPR events (POWER)

What we had (v2.6 and earlier)
● cpu-add QMP command

○ Only implemented on x86
○ No unplug

● No generic CPU hot-plug model
○ cpu-add always added a single vCPU thread
○ Not compatible with hotplug protocol on some platforms
○ cpu-add “out of order” breaks migration

● Not based on standard -device / device_add interfaces
○ Doesn’t match hotplug model used for other devices

● No way to query for possible CPUs
○ Requires assumptions about how -smp is interpreted
○ Not valid for all platforms

What we wanted
● Consistent QOM model for CPUs
● CPU hotplug with standard device_add
● Support for many architectures / targets
● Support for many machine types

○ pc / q35
○ pseries
○ S390
○ ARM / aarch64?

● Possible CPUs introspection
○ Management needs to know what to device_add

Hotplug Granularity
Thread

● Matches cpu-add
○ Existing guest tools
○ Existing management

● Most flexible

Core

● Matches PAPR model

Socket

● Matches hardware
○ Probably...

● Impossible on ‘pseries’
○ Guest events have no

way to express this

● Little reason on other
platforms

● Inflexible
● “Socket” may be artificial

○ pseries
○ aarch64 virtual platform

Hotplug Granularity (2)
● Machine type defines hotplug granularity

○ Thread
■ pc / q35 (matches ACPI protocol)
■ s390

○ Core
■ pseries (matches PAPR protocol)

○ Socket
■ Nothing yet (but matches plausible real hardware)

○ Multi-chip module?
○ Daughterboard?

CPU QOM Model
● vCPU thread is a QOM object (already)

○ Couldn’t be user instantiated

● Hotpluggable CPU module is also QOM object
○ Added with -device or device_add

(qemu) info qom-tree
/machine (pseries-2.7-machine)
 /peripheral (container)
 /core1 (POWER8E_v2.1-spapr-cpu-core)
 /thread[0] (POWER8E_v2.1-powerpc64-cpu)

(qemu) info qom-tree
/machine (pc-i440fx-2.7-machine)
 /peripheral (container)
 /cpu1 (qemu64-x86_64-cpu)

➢ Sometimes the same object..
○ thread granularity

➢ ..sometimes not
○ other granularity

CPU QOM Model (2)
● Could be additional QOM objects

○ Sockets, modules etc.
○ Decided by machine type
○ No examples yet

● Machine type converts -smp and -cpu into initial QOM objects
○ But could be extended for heterogeneous boards

● Abstract cpu-core class introduced
○ sPAPR uses this as base class for sPAPR specific types
○ .. can be re-used by future platforms

CPU Type Hierarchy Examples

cpu-core

spapr-cpu-core

POWER8E_v2.1-spapr-cpu-core

pseries type hierarchy

cpu

x86_64-cpu

qemu64-x86_64-cpu

pc (x86) type hierarchy

The new CPU device semantics
● -device CPU-device-type[,socket-id=][,core-id=][,thread-id=]

○ CPU-device-type is machine-dependent
● sPAPR

○ -device POWER8_v2.0-spapr-cpu-core,core-id=8
■ Only core-id needs to be specified

● X86
○ -device qemu64-x86_64-cpu,socket-id=2,core-id=0,thread-id=0

■ Need to specify thread-id, core-id and socket-id

Discovery and introspection

● query-hotpluggable-cpus
○ QMP interface
○ Lists information management needs to hot plug:

■ Device type for device_add
● Depends on machine type and “-cpu cpu_model”
● Might depend on other parameters

■ Device properties for each CPU
● thread-id, core-id, socket-id, node-id
● Future machine types might use more

○ Lists both initial and possible CPUs

● info hotpluggable-cpus (HMP wrapper)

How would we know what CPU objects to create ?

Demonstration
● Example of info hotpluggable-cpus and device_add device_del
● Pseries with multiple SMT modes
● X86

sPAPR PowerPC semantics - single threaded guest
-smp 1,maxcpus=2

(qemu) info hotpluggable-cpus
Hotpluggable CPUs:
 type: "host-spapr-cpu-core"
 vcpus_count: "1"
 CPUInstance Properties:

core-id: "1"
 type: "host-spapr-cpu-core"
 vcpus_count: "1"
 qom_path: "/machine/unattached/device[1]"
 CPUInstance Properties:

core-id: "0"
(qemu) device_add host-spapr-cpu-core,id=core1,core-id=1
(qemu) device_del core1

sPAPR PowerPC semantics - SMT4 guest
-smp 4,cores=2,threads=4,maxcpus=8 -cpu POWER8E

(qemu) info hotpluggable-cpus
Hotpluggable CPUs:
 type: "POWER8E_v2.1-spapr-cpu-core"
 vcpus_count: "4"
 CPUInstance Properties:
 core-id: "4"
 type: "POWER8E_v2.1-spapr-cpu-core"
 vcpus_count: "4"
 qom_path: "/machine/unattached/device[1]"
 CPUInstance Properties:
 core-id: "0"
(qemu) device_add POWER8E_v2.1-spapr-cpu-core,id=core1,core-id=4
(qemu) device_del core1

sPAPR PowerPC semantics - SMT8 guest
-smp 8,cores=2,threads=8,maxcpus=16

(qemu) info hotpluggable-cpus
Hotpluggable CPUs:
 type: "host-spapr-cpu-core"
 vcpus_count: "8"
 CPUInstance Properties:

core-id: "8"
 type: "host-spapr-cpu-core"
 vcpus_count: "8"
 qom_path: "/machine/unattached/device[1]"
 CPUInstance Properties:

core-id: "0"
(qemu) device_add host-spapr-cpu-core,id=core1,core-id=8
(qemu) device_del core1

Problems: KVM and CPU removal
● KVM doesn't support destroying vCPU instances

○ … and allowing it to do so looks difficult

● Alternative approach
○ Destroy CPU object at QEMU side
○ Keep KVM vCPU instance in “parked” state
○ Re-use “parked” KVM vCPU instance when the same CPU is next plugged

Problems: Handling errors during hotplug
● CPU realize()

○ Can cleanly report errors and abort
○ .. but can’t easily check machine imposed constraints

● Machine plug() handler
○ CPU is already realized

■ Tricky or impossible to rollback
■ Too late to set additional CPU properties

● New: Machine pre_plug() handler
○ Called before realize()
○ Validates properties against machine model

■ Can also set extra properties determined by machine
○ Detects problems early, no rollback

Problems: CPU Options
● Many platforms have optional CPU properties

○ X86 available features
○ POWER compatibility mode

● Usually need to be the same for all CPUs
○ So adding to every device_add is tedious and redundant

● -global provides a natural way to set properties uniformly
○ Works for both initial and hot added CPUs
○ Allows flexibility if we allow non-uniform CPUs in future

● Need to convert -cpu options to -global properties
○ Where this is done depends on platform
○ Needs further cleanup

Problems: Migration nightmares
● cpu_index was allocated in cpu_exec_init()

○ Value depended on CPU instantiation order
○ Used as migration instance id

● Migration requires matching instance ids on source and destination
○ No reasonable way to ensure identical hotplug / unplug order on source and destination
○ Out of order hotplug or unplug would break migration afterwards

■ Already broken on x86 with cpu-add
● Devised a stable cpu_index scheme with minimal impact on archs

○ Machine type can generate cpu_index values before CPU realize()
○ To support CPU hotplug, machines should assign stable values manually

■ sPAPR uses core-id to generate thread cpu_index values
○ Machines that don't support CPU hotplug can still use old auto-assignment

■ Minimal changes until necessary

Future work: NUMA
● Management has to guess which NUMA nodes hotplugged CPUS will be in

○ Already a problem with cpu-add
● -numa command line option isn’t enough

○ Management can’t know CPU indexes to use until it has run query-hotpluggable-cpus
● Possible solution:

○ QMP command to assign a CPU object (socket / core / thread) to a NUMA node at run time
■ Start QEMU in stopped mode ‘-S’
■ Use query-hotpluggable-cpus to get list of possible cpus
■ Assign NUMA nodes to each CPU
■ Start guest with ‘continue’

Future Work: More machine types
● S390

○ Recently implemented cpu-add, move to new model

● ARM / aarch64
○ Some machine types will support hotplug

● powernv
○ In-progress “bare metal” (not paravirtualized) POWER machine
○ May require interactions with other devices on the physical CPU chip

● Prerequisites:
○ cpu_exec_init() and cpu_exec_exit() need to be called at realize / unrealize

■ Already done for x86, s390 and ppc
■ Necessary for handling failures
■ Necessary for manual cpu_index allocation

Future work: POWER specific
● Clean up device tree creation:

○ Device tree represents cores, not threads
○ Currently constructed by 1st thread
○ Should construct from core device, now that it’s a real object

● DRC state migration
○ “Dynamic Reconfiguration Connector”

■ Paravirtual abstraction to communicate hotplug state with guest
○ Not all state currently migrated

■ Concurrent migration and hotplug events can break

Future work: Other
● libvirt support for new CPU hotplug interface (Peter Krempa)

○ First, existing libvirt API in terms of new QEMU API
■ Limited, but helps existing tools

○ Then, new libvirt API
■ More flexible

● -smp rework (Andrew Jones)
○ Convert -smp,sockets=S,cores=C,threads=T into machine properties
○ Removes reliance on global variables for topology
○ Allows machine types to define or override -smp parsing

● Support boot cpu removal
○ Assorted places in QEMU assume the existence of CPU 0

Legal
● This work represents the view of the authors, and does not necessarily

represent the view of IBM or of Red Hat
● IBM is a trademark of International Business Machines in the United States

and/or other countries
● Red Hat is a trademark of Red Hat Inc. in the United States and/or other

countries
● Linux is the registered trademark of Linus Torvalds
● Other company, product and service names may be trademarks of others
● This document is provided “AS IS”, with no express or implied warranties. Use

the information in this document at your own risk

