QEMU CPU Hotplug

Bharata B Rao, IBM India

<bharata@linux.vnet.ibm.com>

David Gibson, Red Hat Australia

<dgibson@redhat.com>

lgor Mammedov, Red Hat Czech Republic

<imammedo@redhat.com>
Q@ redhat

<|||

KVM Forum 2016

mailto:bharata@linux.vnet.ibm.com
mailto:dgibson@redhat.com
mailto:imammedo@redhat.com

Guest CPU Hot-plug

e Add/remove virtual CPUs in a VM

o Guest is running
o No reboot

e Scale guest compute capacity on demand
e Useful for vertical scaling in Cloud

e Requires guest awareness

o Protocol depends on platform
m ACPI (x86 & ARM)
m PAPR events (POWER)

What we had (v2.6 and earlier)

e cpu-add QMP command
o Only implemented on x86
o No unplug
e No generic CPU hot-plug model
o cpu-add always added a single vCPU thread
o Not compatible with hotplug protocol on some platforms
o cpu-add “out of order” breaks migration
e Not based on standard -device / device add interfaces
o Doesn’t match hotplug model used for other devices
e No way to query for possible CPUs

o Requires assumptions about how -smp is interpreted
o Not valid for all platforms

What we wanted

Consistent QOM model for CPUs
CPU hotplug with standard device add
Support for many architectures / targets
Support for many machine types

o pc/q35
o pseries
o S390

o ARM / aarch64?

Possible CPUs introspection
o Management needs to know what to device_add

Hotplug Granularity

Thread

e Matches cpu-add
o Existing guest tools
o Existing management
e Most flexible

e Impossible on ‘pseries’
o Guest events have no
way to express this

Core

e Matches PAPR model

e Little reason on other
platforms

Socket

Matches hardware
o Probably...

Inflexible

“Socket” may be artificial
o pseries
o aarch64 virtual platform

Hotplug Granularity (2)

e Machine type defines hotplug granularity

o Thread
m pc/g35 (matches ACPI protocol)
m s390
o Core
m pseries (matches PAPR protocol)
o Socket

m Nothing yet (but matches plausible real hardware)
o Multi-chip module?
o Daughterboard?

CPU QOM Model

e VCPU thread is a QOM object (already)
o Couldn’t be user instantiated

e Hotpluggable CPU module is also QOM object
o Added with -device or device_add

> Sometimes the same object.. > ..sometimes not
O thread granularity O other granularity

(gemu) info qom-tree (gemu) info qom-tree
/machine (pc-1440fx-2.7-machine) /machine (pseries-2.7-machine)
/peripheral (container) /peripheral (container)

/cpul (gemu64-x86_64-cpu) /corel (POWER8SE_v2.1-spapr-cpu-core)
/thread[@] (POWER8E_v2.1-powerpc64-cpu)

CPU QOM Model (2)

e Could be additional QOM objects

o Sockets, modules etc.
o Decided by machine type
o No examples yet
e Machine type converts -smp and -cpu into initial QOM objects
o But could be extended for heterogeneous boards

e Abstract cpu-core class introduced

o sPAPR uses this as base class for sPAPR specific types
o ..can be re-used by future platforms

CPU Type Hierarchy Examples

pc (x86) type hierarchy pseries type hierarchy

o) (epveors)
i !

[x86_64-cpu] [spapr-cpu-core]

! !

[gemu64-x86_64-cpu] [POWERSE_v2.1-spapr-cpu-core]

The new CPU device semantics

e -device CPU-device-type[,socket-id=][,core-id=][,thread-id=]
o CPU-device-type is machine-dependent
e sSPAPR
o -device POWERS8 v2.0-spapr-cpu-core,core-id=8
m Only core-id needs to be specified
e X86
o -device gemu64-x86 64-cpu,socket-id=2,core-id=0,thread-id=0
m Need to specify thread-id, core-id and socket-id

Discovery and introspection

How would we know what CPU objects to create ?

e query-hotpluggable-cpus
o QMP interface
o Lists information management needs to hot plug:
m Device type for device_add
e Depends on machine type and “-cpu cpu_model”
e Might depend on other parameters
m Device properties for each CPU
e thread-id, core-id, socket-id, node-id
e Future machine types might use more
o Lists both initial and possible CPUs

e info hotpluggable-cpus (HMP wrapper)

Demonstration

e Example of info hotpluggable-cpus and device add device del
e Pseries with multiple SMT modes
e X86

sPAPR PowerPC semantics - single threaded guest

-smp 1, maxcpus=2

(gemu) info hotpluggable-cpus
Hotpluggable CPUs:
type: "host-spapr-cpu-core”
vcpus_count: "1"
CPUInstance Properties:
core-id: "1"
type: "host-spapr-cpu-core”
vcpus_count: "1"
gom_path: "/machine/unattached/device[1]"
CPUInstance Properties:
core-id: "@"
(gemu) device_add host-spapr-cpu-core,id=core1,core-id=1
(gemu) device_del core1

sPAPR PowerPC semantics - SMT4 guest

-smp 4,cores=2,threads=4,maxcpus=8 -cpu POWERSE

(gemu) info hotpluggable-cpus
Hotpluggable CPUs:
type: "POWER8E_v2.1-spapr-cpu-core"
vcpus_count: "4"
CPUInstance Properties:
core-id: "4"
type: "POWER8E_v2.1-spapr-cpu-core”
vcpus_count: "4"
gom_path: "/machine/unattached/device[1]"
CPUInstance Properties:
core-id: "@"
(gemu) device_add POWER8SE_v2.1-spapr-cpu-core,id=corel,core-id=4
(gemu) device_del core1

sPAPR PowerPC semantics - SMT8 guest

-smp 8,cores=2,threads=8, maxcpus=16

(gemu) info hotpluggable-cpus
Hotpluggable CPUs:
type: "host-spapr-cpu-core”
vcpus_count: "8"
CPUInstance Properties:
core-id: "8"
type: "host-spapr-cpu-core”
vcpus_count: "8"
gom_path: "/machine/unattached/device[1]"
CPUInstance Properties:
core-id: "@"
(gemu) device_add host-spapr-cpu-core,id=corel,core-id=8
(gemu) device_del core1

Problems: KVM and CPU removal

e KVM doesn't support destroying vCPU instances

o ... and allowing it to do so looks difficult

e Alternative approach

o Destroy CPU object at QEMU side
o Keep KVM vCPU instance in “parked” state
o Re-use “parked” KVM vCPU instance when the same CPU is next plugged

Problems: Handling errors during hotplug

e CPU realize()

o Can cleanly report errors and abort
o .. but can'’t easily check machine imposed constraints

e Machine plug() handler
o CPU is already realized
m Tricky or impossible to rollback
m Too late to set additional CPU properties

e New: Machine pre_plug() handler
o Called before realize()
o Validates properties against machine model
m Can also set extra properties determined by machine
o Detects problems early, no rollback

Problems: CPU Options

e Many platforms have optional CPU properties
o X86 available features
o POWER compatibility mode
e Usually need to be the same for all CPUs
o So adding to every device_add is tedious and redundant
-global provides a natural way to set properties uniformly
o Works for both initial and hot added CPUs
o Allows flexibility if we allow non-uniform CPUs in future
Need to convert -cpu options to -global properties

o Where this is done depends on platform
o Needs further cleanup

Problems: Migration nightmares

e cpu_index was allocated in cpu_exec init()
o Value depended on CPU instantiation order
o Used as migration instance id

e Migration requires matching instance ids on source and destination
o No reasonable way to ensure identical hotplug / unplug order on source and destination
o Out of order hotplug or unplug would break migration afterwards
m Already broken on x86 with cpu-add

e Devised a stable cpu_index scheme with minimal impact on archs
o Machine type can generate cpu_index values before CPU realize()
o To support CPU hotplug, machines should assign stable values manually
m SPAPR uses core-id to generate thread cpu_index values
o Machines that don't support CPU hotplug can still use old auto-assignment
m Minimal changes until necessary

Future work: NUMA

e Management has to guess which NUMA nodes hotplugged CPUS will be in
o Already a problem with cpu-add

e -numa command line option isn’t enough
o Management can’t know CPU indexes to use until it has run query-hotpluggable-cpus

e Possible solution:
o QMP command to assign a CPU object (socket / core / thread) to a NUMA node at run time
m Start QEMU in stopped mode ‘-S’
m Use query-hotpluggable-cpus to get list of possible cpus
m Assign NUMA nodes to each CPU
m Start guest with ‘continue’

Future Work: More machine types

e S390

o Recently implemented cpu-add, move to new model

e ARM//aarcht4

o Some machine types will support hotplug

e powernv

o In-progress “bare metal” (not paravirtualized) POWER machine
o May require interactions with other devices on the physical CPU chip

e Prerequisites:
o cpu_exec_init() and cpu_exec_exit() need to be called at realize / unrealize
m Already done for x86, s390 and ppc
m Necessary for handling failures
m Necessary for manual cpu_index allocation

Future work: POWER specific

e Clean up device tree creation:
o Device tree represents cores, not threads
o Currently constructed by 1st thread
o Should construct from core device, now that it's a real object

e DRC state migration
o “Dynamic Reconfiguration Connector”
m Paravirtual abstraction to communicate hotplug state with guest
o Not all state currently migrated
m Concurrent migration and hotplug events can break

Future work: Other

e libvirt support for new CPU hotplug interface (Peter Krempa)
o First, existing libvirt APl in terms of new QEMU API
m Limited, but helps existing tools
o Then, new libvirt API
m More flexible
e -smp rework (Andrew Jones)
o Convert -smp,sockets=S,cores=C,threads=T into machine properties
o Removes reliance on global variables for topology
o Allows machine types to define or override -smp parsing
e Support boot cpu removal
o Assorted places in QEMU assume the existence of CPU 0

Legal

This work represents the view of the authors, and does not necessarily
represent the view of IBM or of Red Hat

IBM is a trademark of International Business Machines in the United States
and/or other countries

Red Hat is a trademark of Red Hat Inc. in the United States and/or other
countries

Linux is the registered trademark of Linus Torvalds

Other company, product and service names may be trademarks of others
This document is provided “AS IS”, with no express or implied warranties. Use
the information in this document at your own risk

