
© Copyright 2014 Pivotal. All rights reserved.© Copyright 2014 Pivotal. All rights reserved. 1

Ramiro Salas, @ramirosalas
Advisory Architect | Pivotal

Cloud Foundry
and OpenStack

Open Source Communities

OpenStack - IaaS
est. 2010

Cloud Foundry - PaaS
est. 2011

(Free as in Speech, not as in Beer).

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

Traditional

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

IaaS

Networking

Storage

Servers

Virtualization

O/S

Middleware

Runtime

Data

Applications

PaaS

Yo
u

M
an

ag
e Yo

u
M

an
ag

e

Yo
u

M
an

ag
e

What is a PaaS?

Joshua McKenty

Nova v0.1 was
written in 17 days

by 5 people.

OpenStack & Cloud Foundry
License Apache v2.0
Community Vendors, Users, and Developers

Architecture API-based services and message-passing

How are things the same?

Cloud Foundry Foundation

Cloud Foundry Foundation & OpenStack Members

OpenStack Cloud Foundry

Language Python Go and Ruby

Release Cycle 6 months, integrated 2 weeks, parallel

Governance Dedicated Foundation Linux Foundation project

Installation tools Various BOSH

Communication Hub IRC (#openstack-dev) Mailing lists

Source code & review Gerritt & Private Git GitHub & pull requests

Adoption Mostly OSS trials and dev/test
environments

Mostly commercial production
deployments

How are things different?

Units of Value
IaaS - OpenStack
•VMs
•Networks
•Volumes
• Images
•Security Groups, etc.

Users Don’t Care About:
•Hypervisors
•Real Network Topologies
•How is the Storage

Managed
•Where are the Images

Stored
•What Hardware is Being

Used

Units of Value
IaaS - OpenStack
•VMs
•Networks
•Volumes
• Images
•Security Groups, etc.

But they still have to care
about:
• IP addresses
•Disk sizes
•VM orchestration
•OS Lifecycle
•HA/DR

OpenStack Constructs
Give me a VM

instance	
 =	
 nova.servers.create(name="test",	
 image=image,	

flavor=flavor,	
 key_name="mykey")

Give me a Volume
volume	
 =	
 create(8192,	
 snapshot_id=None,	
 source_volid=None,	
 	

name=VolName,	
 description=“My	
 Volume”,	
 volume_type=None,	

user_id=None,	
 project_id=None,	
 availability_zone=az1,	
 	

metadata=None,	
 imageRef=None)

Similar for Networks, Images, etc.

• Focuses exclusively on applications
• Abstracts resources even further
• No IPs - Message queues instead
• No middleware configuration - Buildpacks
• Scale automatically
• All your logs in the same place
• Designed for Cloud Native Apps

So a new layer is born: PaaS

Units of Value
PaaS - Cloud Foundry
•Applications
•Services

•Containers are transparent
• Lifecycle is fully managed
•System changes are

declarative (manifest.yml)
• Front-ends, middleware,

VMs, etc. all abstracted

Apps run on Containers
Services run on VMs

Structured vs. Unstructured PaaS
Unstructured
•DevOps controls every

aspect of the deliverable app
• Filesystem
•Ports exposed
• Layers
•Repositories
•Orchestration
•Dependencies…

Example:
Custom-built systems with
different pieces like:
•Docker
•Kubernetes
•Mesos…

But Often, Containers Alone Aren’t Enough…

Structured vs. Unstructured PaaS
Structured
•Developers only specifies app

instances, services to bind, and
memory.

•PaaS takes care of:
•Routing
•Security
• Filesystem
•Ports
•Scheduling
•High Availability, etc…

They Don’t have to Care
about the HOW

Cloud Foundry is…
The world’s leading open source platform-as-a-service.
•Supported by dozens of major organizations
• Language and framework agnostic
•Manages both VMs and containers
•Orchestrates both applications and data services

Founded and commercialized by Pivotal Software, Inc.
Code donated to Cloud Foundry Foundation in 2015

An (Overly) Simple View of the World

Applications
•Stateless
•Run in Containers
•Horizontally Scalable
•Disposable
•No permanent storage

Data Services
•Stateful
•Run in Virtual Machines
•Multi-tenant
•Diagonally scalable
•Durable storage

12Factor.net
Methodology for building software that:

•Use declarative formats for setup automation, to
minimize time and cost for new developers
joining the project;
•Have a clean contract with the underlying

operating system, offering maximum portability
between execution environments;
•Are suitable for deployment on modern cloud

platforms, obviating the need for servers and
systems administration;
•Minimize divergence between development and

production, enabling continuous deployment for
maximum agility;
•And can scale up without significant changes to

tooling, architecture, or development practices.

© Copyright 2014 Pivotal. All rights reserved. 23

▪Screen shot of Dev Console – pointing out simple
abstraction
▪Demo

PCF Demo: cf push

© Copyright 2014 Pivotal. All rights reserved.© Copyright 2014 Pivotal. All rights reserved. 25

CF
Architecture

Cloud Foundry: Applications and Services
Services (virtual machines):
managed by “BOSH”

Applications (containers):
managed by “Runtime”

Provision services,
not machines

Enables continuous
delivery

Cloud-agnostic view
of Platform Ops

Holistic Toolchain for
“rule them all"

Eliminate bespoke
automation on top of
config management

Why BOSH

 Blobstore

BOSH

 Health
 Monitor

 DB
Deploy my
Services

Worker VMs

Messaging

Health Manager

Cloud Controller

Target VM

 BOSH Director

 NATS

IaaS

Ops Manager + BOSH

Pivotal

Pivotal Cloud Foundry Architecture
Enterprise Cloud Foundry

Service Foo

Broker DB

Service Bar

Broker MQ

Service Baz

Broker etc

Elastic
Runtime

DEA DEA

DEA DEA

vCA

BOSH
provisioning / configuration / orchestration

AWS OpenStackvSphere

Operations
Manager

Developer
Console

Enterprise
Support

Core
Comps

Cloud
Controller

Router

Health
Manager

…..

OpenStack Integration

BOSH CPI
•Can use S3 interfaces for

blobstore (Swift/Ceph)
•Uses Glance API to upload

stemcells
• Interfaces directly with Nova

(Cinder and Neutron are
called via Nova)

•Credentials obtained via
Keystone

Push App

http://…

> cf Cloud
Controller

Router

Health
Manager

DEA Pool (Droplet Execution Agent)

DEA / Cell

Staging Apps

Running Apps

Warden / Garden

Containerization

NATS
(message bus)

(API)

Process flow

Orgs, Spaces, Users and Quotas

Logical division within a Pivotal CF
install / Foundation.

Each organization has its own users
and assigned quota

User permissions / roles are specified
per space within an organization

Sub-divided into Spaces

Organizations

Different quota limits (e.g. “small”,
“enterprise”, “default”, “runaway”)
can be assigned per Organization

Quota defines

• Total Memory
• Total # of Services
• Total # of Routes

Quotas and Plans

Logical sub-division within an
organization

Services and Applications are created
/ specified per Space

Users authorized at an organization
level can have different roles per
space

Same Service can have different
meanings per space

Spaces

© Copyright 2014 Pivotal. All rights reserved. 37

① Upload app
bits and
metadata

push app

② Create and bind services

③ Stage application

④ Deploy application

⑤ Manage application health

…which we will depict in a moment

Blobstore DB

Cloud Controller Service Broker
Node(s)

DEA
DEA

DEA
DEA

+ app MD

+ =

Service
credentials

Ro
ut
e

Cloud Foundry
Elastic Runtime

Overview: Deploying App to  
Cloud Foundry Runtime

Cloud Foundry
Elastic Runtime

Blobstore DB

DEA Detect Compile Release
NoYes

System
Buildpacks

+ =

Cloud Controller

Ro
ut
er

• Staging*

• /bin/detect

• /bin/compile

• /bin/release

• Configure droplet

• Runtime (Ruby/Java/Node/Python)

• Container (Tomcat/Websphere/Jetty)

• Application (.WAR, .rb, .js, .py)

Stage an Application

Blobstore Cloud Controller

Messaging 
(NATS)

DEA DEA DEA

Access
App

Ro
ut
er Cloud Foundry

Elastic Runtime

Deploying an Application

Buildpacks

Containers

Droplet Execution
Agents

Under the Hood

Defines the rules to create a fully-contained
 execution environment

+ =

A Droplet is a fully self-sufficient, referentially correct
package that can be executed in an isolated

environment

App Buildpack Droplet

Buildpacks

Isolated environments within an OS VM that run
Droplets according to defined rules

There can be many Containers per OS VM thus
increasing VM utilization and density

Containers

VMs that host Containers and can create/destroy them
as needed or ordered

Droplet Execution Agents

VMs are an inefficient level of isolation

RAM on Machine VM overhead

!

!

!

!

!

!

!

!

!

J2EE
Container
Overhead

J2EE
Container
Overhead

J2EE
Container
Overhead

Why Containers?

Containers + microservices allow denser packing and
looser coupling of components

RAM on Machine VM overhead

" " " " " " "

" " " " " " "

" " " " " " "

Why Containers?

…

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

AMQP
AMQP

Relational
DB

Key/Value
Store

Graph
DB

Microservice Architecture Made Easier

Documentation: http://docs.cloudfoundry.org

Resources

Meetups: http://cloudfoundry.meetup.com/

http://docs.cloudfoundry.org
http://cloudfoundry.meetup.com/

