
CONFIGURATION  MANAGEMENT 
& 

ORCHESTRATION  WITH 

Anirban Saha 
CloudOpen and LinuxCon Europe 2014, Dusseldorf 



HOW  WE’RE  GONNA  SPEND  THE  NEXT  2  HOURS 

• Salt overview and features 
• Get familiar with Salt components 
• Learn how to configure Salt and write states, pillars, etc. 
• Demonstrate a basic Salt environment 
• Learn about Salt Cloud (using AWS EC2) 
• Learn to use Salt orchestrate 
• Create an application stack (load balancers, application servers, database servers) using 

all of the above 
 
 
 



Photo Source : saltstack.org 



SALT  FEATURES 

• Very simple and easy to set up and maintain 
 
• Fast and parallel remote execution 
 
• LOADS and LOADS of built-in modules 
 
• Flexible and scalable 



BASIC  OVERVIEW 



SALT  TERMINOLOGIES  EXPLAINED 

Salt Master - The host running the salt-master daemon and serving the configuration for the client nodes (minions) 
 
Salt Minion – The host running the salt-minion daemon and sync’ing with the salt-master 
 
States – Salt State system or SLS is the representation of a state that a system should be in and is represented in simple 
YAML format 
 
Pillars – It is an interface for Salt to offer global values to be distributed to minions which can be referenced from state 
files (e.g. usernames, passwords, keys) 
 
Environments – It is the method to organize state tree directories (e.g. production, staging, development, etc.) 
 
Node Groups – This is a method to group client nodes as per their functions, locations, etc 
 
Grains – It is an interface to fetch information about the underlying system of a minion 



SALT  BINARIES  EXPLAINED 

On the master : 
salt – The most used binary to control and execute states on remote systems 
salt-cp – Copies a local file to the remote minions 
salt-key – Used to manage public keys for authenticating minions 
salt-master – It is the daemon running on the salt master 
salt-run – Used to execute convenience applications called runners but only on the master 
salt-ssh – Allows salt routines to be executed using ssh only 
salt-cloud – Used to provision cloud instances in public and private clouds 
 
On the minion : 
salt-minion – It is the daemon running on clients to receive commands from the master 
salt-call – Used on the client nodes to fetch configurations from the master 



SALT  FILES  EXPLAINED 

Files on the master : 
 
/etc/salt – Directory containing the main configuration files 
/etc/salt/master – The salt master main configuration file defining all required resources for the 
master 
/etc/salt/pki/master – Directory containing the master keys for authentication with minions and 
also the accepted or rejected minion keys 
/var/log/salt/master – The main log file for the master daemon 
/var/cache/salt/master – The cache directory for master cache data 
 



SALT  FILES  EXPLAINED (CONTD.) 

Files on the minion : 
 
/etc/salt – Directory containing the main configuration files 
/etc/salt/minion – The salt minion main configuration file defining resources for 
the minion and also the salt master to contact 
/etc/salt/grains – The file containing the grains for the minion in YAML format if 
not defined in the main configuration file 
/etc/salt/pki/minion – Directory containing the minion keys for authentication 
with the master 
/var/log/salt/minion – The main log file for the minion daemon 
/var/cache/salt/minion – The cache directory for the minion cache data 
 



PUTTING  ALL  COMPONENTS  TOGETHER 



MASTER  CONFIGURATION 

File - /etc/salt/master 
 
Common options with default values (mostly remains commented and acts as default): 
interface : 0.0.0.0 (interface to which to bind to) 
publish_port: 4505 (the port on which to listen) 
root_dir: / (this gets prepended to other files like log_file, pki_dir, cache_dir if set) 
pki_dir: /etc/salt/pki/master (directory to hold master keys and minion keys already authenticated) 
log_file: /var/log/salt/master (file containing log entries for master daemon) 
 
Have to be set explicitly : 
autosign_file: /etc/salt/autosign.conf (allows listed host’s keys to be accepted automatically, takes options like  
*, *.domain.com, etc) 
autoreject_file: /etc/salt/autoreject.conf (allows listed host’s keys to be rejected automatically) 



MASTER  CONFIGURATION (CONTD.) 

Important options : 
 
file_roots (defines the directories which act as the configuration base for environments containing 
state files) e.g. 
 
file_roots: 
  base: 
    - /opt/cloudopen/salt/base 
  production: 
    - /opt/cloudopen/salt/production 
  staging: 
    - /opt/cloudopen/salt/staging 
  development: 
    - /opt/cloudopen/salt/development 



MASTER  CONFIGURATION (CONTD.) 

pillar_roots (defines the directories which act as the configuration base for environments containing pillar files) 
e.g. 
pillar_roots: 
  base: 
    - /opt/cloudopen/salt/pillar/base 
  production: 
    - /opt/cloudopen/salt/pillar/production 
  staging: 
    - /opt/cloudopen/salt/pillar/staging 
 
nodegroups (groups configured based on function types, location, etc. used for remote execution and 
synchronization) e.g. 
nodegroups: 
  proddb: 'G@server_type:db and G@environment:production' 
  stgapp: 'G@server_type:app and G@environment:staging' 
 



             TIME  FOR  SOME   
 
 
 
 
 
 
 
 

HANDS  ON  ACTION 



HOW  TO  WRITE  SALT  CONFIGURATION 

https://github.com/rosesnthornz/cloudopen-europe-2014.git 
 
We’ll start and cover the configuration of the following  
components and refer to the files in the repository  
(cloudopen-europe-2014/salt) 
 
• Pillars 
• States 
• top.sls 
• Nodegroups 
 
 

https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git


CONFIGURING  PILLARS 
File: PILLAR_BASE/<environment>/<resource_name>/init.sls 
e.g. /opt/salt/pillar/production/users/init.sls 
 
users: 
  prod_user: prod-app    
  prod_user_passwd: '<password_hash>' 
       
Accessed in state files as :   
{{ pillar['users']['prod_user'] }}    
 
dev_user_list:    
  optimus: 
    uid: 7001 
    passwd: '<password_hash>' 
  bumblebee: 
    uid: 7002 
    passwd: '<password_hash>' 



Conditionals??? 
 
users:  
  {% if grains['server_type'] == 'app' %}  
    dev_user: dev-app  
  {% elif grains['server_type'] == 'web' %}  
    dev_user: dev-web  
  {% endif %} 



Iterations??? 
 
{% for user, details in pillar['dev_user_list'].iteritems() %}  
{{ user }}:  
  user.present:  
    - home: /home/{{ user }}  
    - uid: {{ details['uid'] }}  
    - password: {{ details['passwd'] }}  
    - shell: /bin/bash  
    - gid: 5002  
{% endfor %} 



Python functions??? 
 
users:  
  {% if grains['host'].startswith('co') %}  
    event: cloudopen  
  {% elif grains['host'].startswith('lc') %}  
    event: linuxcon  
  {% endif %} 



CONFIGURING  STATES 

File : SALT_BASE/<environment>/<state_name>/init.sls  (the state file containing the configuration) 
Files and templates : SALT_BASE/<environment>/<state_name>/files  (the directory containing templates and files) 
e.g. : /opt/salt/staging/mysql/init.sls 
 
ruby-1.9.3:   
  rvm.installed:  
    - default: True 
 
rails: 
  gem.installed:   
    - require: 
      - rvm: ruby-1.9.3 
      - cmd: set_ruby 



CONFIGURING  STATES (CONTD.) 

 

/etc/my.cnf:    
  file.managed: 
    - source: salt://mysql/files/my.cnf 
    - user: root 
    - group: root 
    - mode: 644 
    - template: jinja    (very important) 
    - context: 
      mysql_ip: {{ salt['network.ip_addrs']('eth0')[0] }}  
 



CONFIGURING  TOP.SLS 

File : SALT_BASE/<environment>/top.sls  (the main file containing the definition of which state to assign to which hosts) 
File : PILLAR_BASE/<environment>/top.sls  (also applicable for pillars, as pillars have to be assigned to hosts) 
e.g. : /opt/salt/production/top.sls 
 
production:   (the environment to which the top file belongs to) 
  '*':    (the global match wildcard, matching all hosts) 
    - groups   (list of states which have been configured and will be assigned to the matched hosts) 
    - users 
 
  'proddb':   (name of configured nodegroup) 
    - match: nodegroup (very important, without this it’ll try to match hostname) 
    - mysql 
 
  'server_type: app':  (grain based matching for states) 
    - match: grain 
    - tomcat 
 
  'appserver,webserver': (list based matching for states) 
    - match: list 
    - ntp 
 



CONFIGURING  NODEGROUPS 

File - /etc/salt/master 
 
nodegroups: 
  us-dbservers: 'G@server_type:db and G@location:us-west-1' 
  prodapp: 'G@server_type:app and G@environment:production' 
  stgweb: 'G@server_type:web and G@environment:staging' 
  puppetservers: 'L@*,*.clolab.com,clopadm01.clolab.com '  
 
The first three lines are grain based nodegroup configuration 
The last line is list based nodegroup configuration 



CONFIGURING  MINION 

File - /etc/salt/minion 
 
master: salt-master 
environment: production 
 
File - /etc/salt/grains 
 
location: us-west-1 
server_type: app 
environment: production 
 
 



APPLYING  STATES  &   TARGETING  MINIONS 

From the master to the minion – push mechanism : 
 
# salt '*' test.ping       (global match wildcard) 
# salt –G 'server_type:app and env:prod' state.highstate (grain based match) 
# salt –C 'server_type:web and clo*' state.sls nginx (compound match) 
# salt –L 'appserver,dbserver,webserver' state.sls ntp (list based match) 
# salt –N stgdb cmd.run 'ps –ef | grep mysql'   (nodegroup based match) 
 

From the minion by calling the master – pull mechanism : 
 
# salt-call state.highstate     (salt call from the minion) 



Think you had a lot already…? 

Haaaahhh…I’m not done yet… 



SALT  CLOUD  WORKFLOW 



SALT  CLOUD – CLOUD  PROVIDERS 
File : /etc/salt/cloud.providers  
Directory : /etc/salt/cloud.providers.d/ 
 
cloudopen_ec2_us_west_2:   (provider name, to be used in profiles) 
 
  ssh_interface: private_ips   (network interface for master to use while communicating with minion) 
 
  id: <aws_access_key> 
  key: '<aws_secret_key>' 
 
  keyname: common    (key name created in AWS for instances) 
  private_key: /etc/salt/key/common.pem (the private key to use for instance launch) 
 
  location: us-west-2 
  availability_zone: us-west-2b 
 
  size: t2.micro 
  del_root_vol_on_destroy: True 
  ssh_username: ec2-user   (username to use for logging in) 
  rename_on_destroy: True 
  provider: ec2 



SALT  CLOUD – CLOUD  PROFILES 

File : /etc/salt/cloud.profiles  
Directory : /etc/salt/cloud.profiles.d/ 
 
cloudopen_ec2_prod_common:   (profile name, used in extending profiles or in cloud maps) 
 
  minion:     (minion configuration to be set in the minions) 
    master: salt-master.domain.com 
    environment: production 
 
  image: ami-721b7b42 
  del_root_vol_on_destroy: True 
 
  script: bootstrap-salt   (post install script to be run in the minions after launch) 
  sync_after_install: all   (synchronize grains, modules, etc with the master) 
 
 



SALT  CLOUD – CLOUD  PROFILES (CONTD.) 
cloudopen_ec2_prod_db:   (profile name, extends other profiles, used in cloud maps) 
 
  provider: cloudopen_ec2_us_west_2  (provider name, configured in /etc/salt/cloud.providers) 
 
  network_interfaces:    (only configurable in VPCs) 
    - DeviceIndex: 0 
      PrivateIpAddresses: 
        - Primary: True 
      AssociatePublicIpAddress: False 
      SubnetId: subnet-4236c535 
      SecurityGroupId: 
        - sg-5b35a03e 
 
  grains:     (grains to be set in the minions) 
    server_type: db 
    environment: production 
 
  tag: {'Environment': 'Production', 'Role': 'Database'} (AWS tags to be set in the instances) 
 
  extends: cloudopen_ec2_prod_common  (profile name, extended in other profiles) 



SALT  CLOUD – CLOUD  MAPS 
File : /etc/salt/cloud.map 
 
cloudopen_ec2_prod_db:   (cloud profile name, configured in /etc/salt/cloud.profiles) 
  - colcpdb01.domain.com 
  - colcpdb02.domain.com 
 
cloudopen_ec2_prod_app: 
  - colcpapp01.domain.com 
  - colcpapp02.domain.com 
  - colcpapp03.domain.com 
  - colcpapp04.domain.com 
 
Launching the stack : 
# salt-cloud –m /etc/salt/cloud.map –P [ -P for parallel launch ] 
 
Querying the stack : 
# salt-cloud –m /etc/salt/cloud.map –Q 
 
Terminating the stack : 
# salt-cloud –m /etc/salt/cloud.map –d 
 



Orchestration? 



SALT  ORCHESTRATION  WITH  ORCHESTRATE 

File : SALT_BASE/<ENVIRONMENT>/orchestration/app_stack.sls 
e.g. /opt/cloudopen/salt-cloud/production/orchestration/app_stack.sls 
 
webserver_deploy:    (custom name of definition) 
  salt.state: 
    - tgt: 'prodapp'   (targeting minions) 
    - tgt_type: nodegroup   (target type) 
    - highstate: True 
    - require:    (dependency on other definitions,  
      - salt: dbserver_deploy  e.g. webservers launch only after dbservers) 
 
dbserver_deploy: 
  salt.state: 
    - tgt: 'server_type:db' 
    - tgt_type: grain 
    - highstate: True 
 
Running the orchestration command : 
# salt-run state.orchestrate orchestration.app_stack saltenv=production 



Notice the 
dependency? 



APP  STACK  DEMONSTRATION 



APP  STACK  DEMONSTRATION  OBJECTIVES 

• The stack is going to be a farm of web hosts, all of them connecting to a DB server, and 
all of the web hosts under an ELB with a CNAME pointing to the ELB 

• First the ELB is launched, configured and the CNAME is created pointing to the ELB 
DNS name 

• Next the DB server is launched, configured, the DBs created, the security steps 
executed and the tables populated in the DB 

• The web hosts are then launched fetching the website from a git repository and then 
the web hosts register themselves with the ELB 

• All the steps are interdependent, i.e. the DB host won’t launch without the ELB and 
the web hosts won’t launch without the DB host 



Just a little more… 
 
I promise… 



Some more awesome Salt features… 

• Event System  Used to fire events between Salt instances using the ZeroMQ interface, carrying 
    tag data for filtering of events and a dict data structure containing information 
    about the event 

 
• Reactor  System  Uses the Salt event system to associate event tags with reaction files which uses 

    high data to define reactions to be executed 
 
• Salt  Virt   Cloud controller capability, supports core cloud operations such as virtual machine 

    deployment,  VM migration, network profiling, VM inspection, integration with 
    Salt 

 
• Salt  SSH  Salt capability through the SSH protocol, bypassing the need for the Salt minion to 

    be running on the remote system 



CONTACT : 

Anirban  Saha 
Email :  sahaanirban1988@gmail.com 

Twitter :  @rosesnthornz 

Skype :  anirban.saha.88 
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