
CONFIGURATION MANAGEMENT
&

ORCHESTRATION WITH

Anirban Saha
CloudOpen and LinuxCon Europe 2014, Dusseldorf

HOW WE’RE GONNA SPEND THE NEXT 2 HOURS

• Salt overview and features
• Get familiar with Salt components
• Learn how to configure Salt and write states, pillars, etc.
• Demonstrate a basic Salt environment
• Learn about Salt Cloud (using AWS EC2)
• Learn to use Salt orchestrate
• Create an application stack (load balancers, application servers, database servers) using

all of the above

Photo Source : saltstack.org

SALT FEATURES

• Very simple and easy to set up and maintain

• Fast and parallel remote execution

• LOADS and LOADS of built-in modules

• Flexible and scalable

BASIC OVERVIEW

SALT TERMINOLOGIES EXPLAINED

Salt Master - The host running the salt-master daemon and serving the configuration for the client nodes (minions)

Salt Minion – The host running the salt-minion daemon and sync’ing with the salt-master

States – Salt State system or SLS is the representation of a state that a system should be in and is represented in simple
YAML format

Pillars – It is an interface for Salt to offer global values to be distributed to minions which can be referenced from state
files (e.g. usernames, passwords, keys)

Environments – It is the method to organize state tree directories (e.g. production, staging, development, etc.)

Node Groups – This is a method to group client nodes as per their functions, locations, etc

Grains – It is an interface to fetch information about the underlying system of a minion

SALT BINARIES EXPLAINED

On the master :
salt – The most used binary to control and execute states on remote systems
salt-cp – Copies a local file to the remote minions
salt-key – Used to manage public keys for authenticating minions
salt-master – It is the daemon running on the salt master
salt-run – Used to execute convenience applications called runners but only on the master
salt-ssh – Allows salt routines to be executed using ssh only
salt-cloud – Used to provision cloud instances in public and private clouds

On the minion :
salt-minion – It is the daemon running on clients to receive commands from the master
salt-call – Used on the client nodes to fetch configurations from the master

SALT FILES EXPLAINED

Files on the master :

/etc/salt – Directory containing the main configuration files
/etc/salt/master – The salt master main configuration file defining all required resources for the
master
/etc/salt/pki/master – Directory containing the master keys for authentication with minions and
also the accepted or rejected minion keys
/var/log/salt/master – The main log file for the master daemon
/var/cache/salt/master – The cache directory for master cache data

SALT FILES EXPLAINED (CONTD.)

Files on the minion :

/etc/salt – Directory containing the main configuration files
/etc/salt/minion – The salt minion main configuration file defining resources for
the minion and also the salt master to contact
/etc/salt/grains – The file containing the grains for the minion in YAML format if
not defined in the main configuration file
/etc/salt/pki/minion – Directory containing the minion keys for authentication
with the master
/var/log/salt/minion – The main log file for the minion daemon
/var/cache/salt/minion – The cache directory for the minion cache data

PUTTING ALL COMPONENTS TOGETHER

MASTER CONFIGURATION

File - /etc/salt/master

Common options with default values (mostly remains commented and acts as default):
interface : 0.0.0.0 (interface to which to bind to)
publish_port: 4505 (the port on which to listen)
root_dir: / (this gets prepended to other files like log_file, pki_dir, cache_dir if set)
pki_dir: /etc/salt/pki/master (directory to hold master keys and minion keys already authenticated)
log_file: /var/log/salt/master (file containing log entries for master daemon)

Have to be set explicitly :
autosign_file: /etc/salt/autosign.conf (allows listed host’s keys to be accepted automatically, takes options like
*, *.domain.com, etc)
autoreject_file: /etc/salt/autoreject.conf (allows listed host’s keys to be rejected automatically)

MASTER CONFIGURATION (CONTD.)

Important options :

file_roots (defines the directories which act as the configuration base for environments containing
state files) e.g.

file_roots:
 base:
 - /opt/cloudopen/salt/base
 production:
 - /opt/cloudopen/salt/production
 staging:
 - /opt/cloudopen/salt/staging
 development:
 - /opt/cloudopen/salt/development

MASTER CONFIGURATION (CONTD.)

pillar_roots (defines the directories which act as the configuration base for environments containing pillar files)
e.g.
pillar_roots:
 base:
 - /opt/cloudopen/salt/pillar/base
 production:
 - /opt/cloudopen/salt/pillar/production
 staging:
 - /opt/cloudopen/salt/pillar/staging

nodegroups (groups configured based on function types, location, etc. used for remote execution and
synchronization) e.g.
nodegroups:
 proddb: 'G@server_type:db and G@environment:production'
 stgapp: 'G@server_type:app and G@environment:staging'

 TIME FOR SOME

HANDS ON ACTION

HOW TO WRITE SALT CONFIGURATION

https://github.com/rosesnthornz/cloudopen-europe-2014.git

We’ll start and cover the configuration of the following
components and refer to the files in the repository
(cloudopen-europe-2014/salt)

• Pillars
• States
• top.sls
• Nodegroups

https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git
https://github.com/rosesnthornz/cloudopen-europe-2014.git

CONFIGURING PILLARS
File: PILLAR_BASE/<environment>/<resource_name>/init.sls
e.g. /opt/salt/pillar/production/users/init.sls

users:
 prod_user: prod-app
 prod_user_passwd: '<password_hash>'

Accessed in state files as :
{{ pillar['users']['prod_user'] }}

dev_user_list:
 optimus:
 uid: 7001
 passwd: '<password_hash>'
 bumblebee:
 uid: 7002
 passwd: '<password_hash>'

Conditionals???

users:
 {% if grains['server_type'] == 'app' %}
 dev_user: dev-app
 {% elif grains['server_type'] == 'web' %}
 dev_user: dev-web
 {% endif %}

Iterations???

{% for user, details in pillar['dev_user_list'].iteritems() %}
{{ user }}:
 user.present:
 - home: /home/{{ user }}
 - uid: {{ details['uid'] }}
 - password: {{ details['passwd'] }}
 - shell: /bin/bash
 - gid: 5002
{% endfor %}

Python functions???

users:
 {% if grains['host'].startswith('co') %}
 event: cloudopen
 {% elif grains['host'].startswith('lc') %}
 event: linuxcon
 {% endif %}

CONFIGURING STATES

File : SALT_BASE/<environment>/<state_name>/init.sls (the state file containing the configuration)
Files and templates : SALT_BASE/<environment>/<state_name>/files (the directory containing templates and files)
e.g. : /opt/salt/staging/mysql/init.sls

ruby-1.9.3:
 rvm.installed:
 - default: True

rails:
 gem.installed:
 - require:
 - rvm: ruby-1.9.3
 - cmd: set_ruby

CONFIGURING STATES (CONTD.)

/etc/my.cnf:
 file.managed:
 - source: salt://mysql/files/my.cnf
 - user: root
 - group: root
 - mode: 644
 - template: jinja (very important)
 - context:
 mysql_ip: {{ salt['network.ip_addrs']('eth0')[0] }}

CONFIGURING TOP.SLS

File : SALT_BASE/<environment>/top.sls (the main file containing the definition of which state to assign to which hosts)
File : PILLAR_BASE/<environment>/top.sls (also applicable for pillars, as pillars have to be assigned to hosts)
e.g. : /opt/salt/production/top.sls

production: (the environment to which the top file belongs to)
 '*': (the global match wildcard, matching all hosts)
 - groups (list of states which have been configured and will be assigned to the matched hosts)
 - users

 'proddb': (name of configured nodegroup)
 - match: nodegroup (very important, without this it’ll try to match hostname)
 - mysql

 'server_type: app': (grain based matching for states)
 - match: grain
 - tomcat

 'appserver,webserver': (list based matching for states)
 - match: list
 - ntp

CONFIGURING NODEGROUPS

File - /etc/salt/master

nodegroups:
 us-dbservers: 'G@server_type:db and G@location:us-west-1'
 prodapp: 'G@server_type:app and G@environment:production'
 stgweb: 'G@server_type:web and G@environment:staging'
 puppetservers: 'L@*,*.clolab.com,clopadm01.clolab.com '

The first three lines are grain based nodegroup configuration
The last line is list based nodegroup configuration

CONFIGURING MINION

File - /etc/salt/minion

master: salt-master
environment: production

File - /etc/salt/grains

location: us-west-1
server_type: app
environment: production

APPLYING STATES & TARGETING MINIONS

From the master to the minion – push mechanism :

salt '*' test.ping (global match wildcard)
salt –G 'server_type:app and env:prod' state.highstate (grain based match)
salt –C 'server_type:web and clo*' state.sls nginx (compound match)
salt –L 'appserver,dbserver,webserver' state.sls ntp (list based match)
salt –N stgdb cmd.run 'ps –ef | grep mysql' (nodegroup based match)

From the minion by calling the master – pull mechanism :

salt-call state.highstate (salt call from the minion)

Think you had a lot already…?

Haaaahhh…I’m not done yet…

SALT CLOUD WORKFLOW

SALT CLOUD – CLOUD PROVIDERS
File : /etc/salt/cloud.providers
Directory : /etc/salt/cloud.providers.d/

cloudopen_ec2_us_west_2: (provider name, to be used in profiles)

 ssh_interface: private_ips (network interface for master to use while communicating with minion)

 id: <aws_access_key>
 key: '<aws_secret_key>'

 keyname: common (key name created in AWS for instances)
 private_key: /etc/salt/key/common.pem (the private key to use for instance launch)

 location: us-west-2
 availability_zone: us-west-2b

 size: t2.micro
 del_root_vol_on_destroy: True
 ssh_username: ec2-user (username to use for logging in)
 rename_on_destroy: True
 provider: ec2

SALT CLOUD – CLOUD PROFILES

File : /etc/salt/cloud.profiles
Directory : /etc/salt/cloud.profiles.d/

cloudopen_ec2_prod_common: (profile name, used in extending profiles or in cloud maps)

 minion: (minion configuration to be set in the minions)
 master: salt-master.domain.com
 environment: production

 image: ami-721b7b42
 del_root_vol_on_destroy: True

 script: bootstrap-salt (post install script to be run in the minions after launch)
 sync_after_install: all (synchronize grains, modules, etc with the master)

SALT CLOUD – CLOUD PROFILES (CONTD.)
cloudopen_ec2_prod_db: (profile name, extends other profiles, used in cloud maps)

 provider: cloudopen_ec2_us_west_2 (provider name, configured in /etc/salt/cloud.providers)

 network_interfaces: (only configurable in VPCs)
 - DeviceIndex: 0
 PrivateIpAddresses:
 - Primary: True
 AssociatePublicIpAddress: False
 SubnetId: subnet-4236c535
 SecurityGroupId:
 - sg-5b35a03e

 grains: (grains to be set in the minions)
 server_type: db
 environment: production

 tag: {'Environment': 'Production', 'Role': 'Database'} (AWS tags to be set in the instances)

 extends: cloudopen_ec2_prod_common (profile name, extended in other profiles)

SALT CLOUD – CLOUD MAPS
File : /etc/salt/cloud.map

cloudopen_ec2_prod_db: (cloud profile name, configured in /etc/salt/cloud.profiles)
 - colcpdb01.domain.com
 - colcpdb02.domain.com

cloudopen_ec2_prod_app:
 - colcpapp01.domain.com
 - colcpapp02.domain.com
 - colcpapp03.domain.com
 - colcpapp04.domain.com

Launching the stack :
salt-cloud –m /etc/salt/cloud.map –P [-P for parallel launch]

Querying the stack :
salt-cloud –m /etc/salt/cloud.map –Q

Terminating the stack :
salt-cloud –m /etc/salt/cloud.map –d

Orchestration?

SALT ORCHESTRATION WITH ORCHESTRATE

File : SALT_BASE/<ENVIRONMENT>/orchestration/app_stack.sls
e.g. /opt/cloudopen/salt-cloud/production/orchestration/app_stack.sls

webserver_deploy: (custom name of definition)
 salt.state:
 - tgt: 'prodapp' (targeting minions)
 - tgt_type: nodegroup (target type)
 - highstate: True
 - require: (dependency on other definitions,
 - salt: dbserver_deploy e.g. webservers launch only after dbservers)

dbserver_deploy:
 salt.state:
 - tgt: 'server_type:db'
 - tgt_type: grain
 - highstate: True

Running the orchestration command :
salt-run state.orchestrate orchestration.app_stack saltenv=production

Notice the
dependency?

APP STACK DEMONSTRATION

APP STACK DEMONSTRATION OBJECTIVES

• The stack is going to be a farm of web hosts, all of them connecting to a DB server, and
all of the web hosts under an ELB with a CNAME pointing to the ELB

• First the ELB is launched, configured and the CNAME is created pointing to the ELB
DNS name

• Next the DB server is launched, configured, the DBs created, the security steps
executed and the tables populated in the DB

• The web hosts are then launched fetching the website from a git repository and then
the web hosts register themselves with the ELB

• All the steps are interdependent, i.e. the DB host won’t launch without the ELB and
the web hosts won’t launch without the DB host

Just a little more…

I promise…

Some more awesome Salt features…

• Event System Used to fire events between Salt instances using the ZeroMQ interface, carrying
 tag data for filtering of events and a dict data structure containing information
 about the event

• Reactor System Uses the Salt event system to associate event tags with reaction files which uses

 high data to define reactions to be executed

• Salt Virt Cloud controller capability, supports core cloud operations such as virtual machine

 deployment, VM migration, network profiling, VM inspection, integration with
 Salt

• Salt SSH Salt capability through the SSH protocol, bypassing the need for the Salt minion to

 be running on the remote system

CONTACT :

Anirban Saha
Email : sahaanirban1988@gmail.com

Twitter : @rosesnthornz

Skype : anirban.saha.88

	Configuration management�&�orchestration with
	How we’re gonna spend the next 2 hours
	Slide Number 3
	Salt features
	Basic overview
	Salt terminologies explained
	Salt binaries explained
	Salt files explained
	Salt files explained (contd.)
	Putting all components together
	Master configuration
	Master configuration (contd.)
	Master configuration (contd.)
	 Time for some ���������hands on Action
	How to write salt configuration
	Configuring Pillars
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Configuring states
	Configuring states (contd.)
	Configuring top.sls
	Configuring nodegroups
	Configuring minion
	Applying states & Targeting minions
	Slide Number 26
	Salt cloud workflow
	Salt cloud – cloud providers
	Salt cloud – cloud profiles
	Salt cloud – cloud profiles (contd.)
	Salt cloud – cloud maps
	Slide Number 32
	Salt orchestration with orchestrate
	Slide Number 34
	App stack demonstration
	App stack demonstration objectives
	Slide Number 37
	Slide Number 38
	CONTACT :

