
InfiniBand Network Block Device

Danil Kipnis, danil.kipnis@profitbricks.com

Jack Wang, Fabian Holler, Kleber Souza, Roman Penyaev

mailto:danil.kipnis@profitbricks.com


Overview

● IBNBD: InfiniBand Network Block device
● Transfer block IO using InfiniBand RDMA
● Map a remote block device and access it locally
● Client side

○ registers as a block device, i.e. /dev/ibnbd0
○ transfers block requests to the remote side

● Server side
○ Receives RDMA buffers and converts them to BIOs
○ Submit BIOs down to the underlying block device
○ Send IO responses back to the client



Motivation

● ProfitBricks GmbH is an IaaS provider
● Our data centers:

○ compute nodes with customer VMs
○ storage servers with the HDDs/SSDs
○ InfiniBand network

● SRP/SCST for transfer of customer IOs from the VM on a 
compute node to the physical device on the storage server.

● Problems:
○ SCSI IO Timeouts
○ SCSI Aborts
○ Overhead of intermediate protocol



Goals

● Simplify operation
○ regular tasks (i.e. mapping / unmapping)
○ maintenance (i.e. server crash)

● Thin implementation
○ plain Block IO - no intermediate SCSI layer
○ better maintainability
○ integration into a software defined storage solution

● Performance
○ optimize for io latency



Design objective 

● Eliminate SCSI as intermediate transport layer
● Rely on the IB service to reduce design complexity

○ Minimal error handling: take advantage of the reliable 
mode of IB, which guarantees an RDMA operation to 
either succeed or fail.

○ simpler, robust and easier to maintain transport layer
○ No IO timeouts and retransmissions

● Minimize number of RDMA operations per IO to achieve 
lower latency

● Allow for an IO response to be processed on the CPU the 
IO was originally submitted on



Operation

● Mapping client side
○ Server address and device path on the server
○ $echo “device=/dev/sdb server=gid:xxxx:xxx:xxxx” > 

/sys/kernel/ibnbd/map_device

○ /dev/ibnbd<x> is created
● Export server side

○ no configuration is required
● Devices listed under /sys/kernel/ibnbd/devices/
● Session listed under /sys/kernel/ibtrs/sessions/
● Mapping options

○ Input mode (client side): Request or Multiqueue
○ IO mode (server side): block IO or file IO



Overall structure

ibnbd_client.ko

ibtrs_client.ko

ibnbd_server.ko

ibtrs_server.ko

InfiniBand RDMA

Client Server

/dev/ibnbd0
/dev/sdb

block layer

IB transport

● IBTRS (InfiniBand transport)
○ generic UAL for IB RDMA
○ can be reused by a different block device or any application 

utilizing request read/write RDMA semantics (i.e. replication 
solution)



IBNBD is responsible for the delivery of block IO requests from client to storage 
server. Uses IBTRS as its IB rdma transport layer

● Client on compute node:
○ ibnbd_client.ko provides the mapped block devices (/dev/ibnbd<x>) and 

prepares IO for the transfer.
○ ibtrs_client.ko establishes connection to a server and executes rdma 

operations requested by ibnbd

● Server on storage side:
○ ibtrs_server.ko accepts connections from client, executes rdma transfers, 

hands over received data to ibnbd_server.
○ ibnbd_server.ko processes incoming IO requests and hands them over 

down to the underlying block device (i.e. an /dev/sdb device)

Module functions



● Client-side server (DMA) memory management
● Server reserves queue_depth chunks each max_io_size 

big
● Client is managing this memory
● Allows to reduce number of RDMA operations per IO
● Tradeoff between memory consumption vs. latency
● client uses 32 bit imm field to tell server where transferred 

data can be found
● server uses imm field to tell client which outstanding IO is 

completed

Memory management, immediate field



1. ibnbd_client
○ converts incoming block request into an sg list with a header

2. ibtrs_client
○ transfers data (write IO) or control (read IO) in a single rdma write
○ uses 32 bit imm field to tell the server where the data can be found

3. ibtrs_server
○ notifies ibnbd_server about an incoming IO request

4. ibnbd_server
○ generates BIO and submits it to underlying device
○ acknowledges the RDMA operation, when BIO comes back

5. ibtrs_server sends confirmation (write IO) or data (read IO) back to client
6. ibtrs_client notifies ibnbd_client about a completed RDMA operation
7. ibnbd_client completes the original block request

Transfer procedure



Transfer procedure: read

ibnbd_client ibtrs_client ibtrs_server ibnbd_server

Read block 
request

Complete
request

Buffer 
addresses 
and control 

header

imm
points

to request

imm points 
to buffer

send buffers

Submit BIO

BIO 
completed

RDMA Write w. imm

RDMA Write
...

RDMA Write w. imm

RDMA Write

● Same procedure as used by iSER or SRP: server initiates transfer
● Fast memory registration feature is used to reduce number of transfers



Transfer procedure: write

ibnbd_client ibtrs_client ibtrs_server ibnbd_server

Write block 
request

Complete
request

send data 
and control 

header

imm
points

to request

imm points 
to buffer

send ack

Submit BIO

BIO 
completed

RDMA Write w. imm

RDMA Write w. imm

● Different to iSER or SRP: Client initiates the transfer into a server buffer
● Only two RDMA operations



Transfer procedure: write, IBNBD vs iSER/SRP

send data 
and control 

header

complete
request

imm points 
to buffer

with data.
submit BIO

send ack

RDMA Write

RDMA Write

IBNBD

send 
control

complete 
request

read data

send ack

SCSI Write cmd

SCSI Resp

iSER / SRP

RDMA Read

RDMA Read
...

client server initiator target



● “Session” is connecting a client with a server.
● Consists of as many IB connections as CPUs on client.
● Each IB connection: separate cq_vector (and IRQ).
● Affinity of each IRQ is set to a separate CPU.
● Server sends IO response on the same connection he got 

the request on.
● Interrupt on client is generated on the same cpu where the 

IO was originally submitted.
● Reduce data access across different NUMA nodes

Connection management



● Inflight on client side is limited by the number of DMA 
buffers reserved on the server side

● All the ibnbd devices mapped from the same server share 
the same remote buffers

● Fair sharing by making use of the shared tags feature
● MQ: As many hardware queues as CPUs - each IB 

connection belonging to a session does in fact function as 
a separate hardware queue.

Queue Depth and MQ support



● No IO timeouts and no IO retransmissions
● Heartbeats to detect unresponsive peers (i.e. kernel crash)

○ RDMA might succeed even if CPU on remote is halted
● Reconnecting after an IB error

○ Client keeps the devices and tries to reconnect
○ Server closes all devices and destroys session

● APM Support
○ Server is connected with two IB ports to two different 

switches
○ transparent failover in case of cable or IB switch failure

Error handling



● Reliable multicast over InfiniBand UD Multicast
● IBTRS API: Join several established sessions into one 

“multicast” session
● Submit IO once - it will be confirmed after the IO is 

delivered to all servers in the group
● Useful for replication (i.e. mirror)
● Reduce load on the IB link connecting a compute node 

with the IB switch

Outlook: Reliable Multicast



Performance: Measurement setup

Mimic VMs running on different CPUs and accessing their devices.

CPU0 CPU1 CPU2 CPU64

client:

fio fio fio fio

ibnbd0 ibnbd1 ibnbd2 ibnbd64

...

...

...

QP QP QP QP

server:

nullb0 nullb1 nullb2 nullb64...

direct IO, libaio, local memory allocation policy

ibtrs/ibnbd



Original scalability problem



IOMMU

+   97.59%     0.00%             8             fio  [.] io_submit                                                                                                             

+   97.58%     0.00%             0             fio  [k] sys_io_submit                                                                                                         

+   97.54%     0.01%           397             fio  [k] do_io_submit                                                                                                          

+   97.48%     0.01%           397             fio  [k] aio_run_iocb                                                                                                          

+   97.07%     0.03%          2059             fio  [k] blkdev_direct_IO                                                                                                      

+   97.04%     0.00%           172             fio  [k] __blockdev_direct_IO                                                                                                  

+   96.99%     0.06%          3520             fio  [k] do_blockdev_direct_IO                                                                                                 

+   95.11%     0.00%           282             fio  [k] submit_bio                                                                                                            

+   95.09%     0.00%           168             fio  [k] generic_make_request                                                                                                  

+   93.47%     0.04%          2577             fio  [k] map_sg                                                                                                                

-   92.60%    92.60%       5786351             fio  [k] _raw_spin_lock_irqsave                                                                                                

   - _raw_spin_lock_irqsave                                                                                                                                                   

      + 50.39% map_sg                                                                                                                                                         

      + 49.38% unmap_sg                                                                                                                                                       

+   48.86%     0.00%           124             fio  [k] blkdev_write_iter                                                                                                     

+   48.85%     0.01%           518             fio  [k] __generic_file_write_iter                                                                                             

+   48.82%     0.00%           269             fio  [k] generic_file_direct_write                                                                                                               



IOMMU vs no IOMMU



IBNBD vs SRP, block io vs, fileio, NUMA effects



NUMA effects
numa-ctl --hardware

node   0   1   2   3   4   5   6   7 

  0:  10  16  16  22  16  22  16  22 

HCA is on 
NUMA 0



● High throughput and low latency due to:
○ Only two rdma messages per IO
○ Simplified client side server memory management
○ Eliminated SCSI sublayer

● Simple configuration and handling
○ Server side is completely passive: volumes do not need to be 

explicitly exported
○ Only IB port GID and device path needed on client side to map 

a block device
○ A device can be remapped automatically i.e. after storage 

reboot
● Pinning of IO-related processing to the CPU of the producer

Summary: Major characteristics of the driver 



Existing Solutions

● SRP/SCST
○ SCSI RDMA Protocol

● ISER
○ iSCSI extension for RDMA
○ target executes RDMA operations

● accelio/nbdx
○ server side in user space
○ obsolete in favor of NVMEoF

● NVMEoF
○ transports NVME commands
○ target initiates RDMA transfers



Questions? 

danil.kipnis@profitbricks.com



Backup: Test Hardware

● Mellanox Connnect X3 HCA
○ dualport, 40 Gb/sec

● AMD 64 Cores
○ AMD Opteron 6386 SE
○ 8 NUMA nodes



Backup: Existing Solutions

● SRP/SCST: SCSI RDMA Protocol
● ISER: iSCSI Extensions for RDMA

○ SCSI sub layer
○ Only target executes RDMA operations

● accelio/nbdx
○ server side in user space, libaio, obsolete

● NVMEoF
○ transports NVME commands
○ server executes RDMA operations



[global]
description=Emulation of Storage Server Access Pattern
bssplit=512/20:1k/16:2k/9:4k/12:8k/19:16k/10:32k/8:64k/4:128k/2
fadvise_hint=0
rw=randrw:2
direct=1
random_distribution=zipf:1.2
size=1G
ioengine=libaio
iodepth=128
iodepth_batch_submit=128
iodepth_batch_complete=128
gtod_reduce=1
group_reporting=1

# pinning options
cpus_allowed=0-63
cpus_allowed_policy=split
numa_mem_policy=local

Backup: fio configuration


