i: PROFITBRICKS

The laasS-Company.

)

_——

InfiniBand Network Block Device

Danil Kipnis, danil.kipnis@profitbricks.com

Jack Wang, Fabian Holler, Kleber Souza, Roman Penyaev

mailto:danil.kipnis@profitbricks.com

Overview

IBNBD: InfiniBand Network Block device

Transfer block 10 using InfiniBand RDMA

Map a remote block device and access it locally

Client side

o registers as a block device, i.e. /dev/ibnbd0

o transfers block requests to the remote side

e Server side

o Receives RDMA buffers and converts them to BIOs
o Submit BIOs down to the underlying block device

o Send IO responses back to the client

E PROFITBRICKS

The laaS-Company.

Motivation

e ProfitBricks GmbH is an laaS provider
e Qur data centers:
o compute nodes with customer VMs
o storage servers with the HDDs/SSDs
o InfiniBand network
e SRP/SCST for transfer of customer 10s from the VM on a
compute node to the physical device on the storage server.
e Problems:
o SCSI 10 Timeouts
o SCSI Aborts
o Overhead of intermediate protocol

i: PROFITBRICKS

The laaS-Company.

e Simplify operation

o regular tasks (i.e. mapping / unmapping)

o maintenance (i.e. server crash)
e Thin implementation

o plain Block IO - no intermediate SCSI layer

o better maintainability

o integration into a software defined storage solution
e Performance

o optimize for io latency

{: PROFITBRICKS

The laaS-Company.

Design objective

e Eliminate SCSI as intermediate transport layer
e Rely on the IB service to reduce design complexity
o Minimal error handling: take advantage of the reliable
mode of IB, which guarantees an RDMA operation to
either succeed or fail.
o simpler, robust and easier to maintain transport layer
o No IO timeouts and retransmissions
e Minimize number of RDMA operations per IO to achieve
lower latency
e Allow for an IO response to be processed on the CPU the
|O was originally submitted on

E PROFITBRICKS

The laaS-Company.

Operation

e Mapping client side
o Server address and device path on the server

0 S$echo “device=/dev/sdb server=gid:xxXxx:xxX:xxXxXx"” >

/sys/kernel/ibnbd/map device
O /dev/ibnbd<x> IS created
e Export server side
o no configuration is required

e Devices listed under /sys/kernel/ibnbd/devices/

e Session listed under /sys/kernel/ibtrs/sessions/

e Mapping options
o Input mode (client side): Request or Multiqueue
o 10 mode (server side): block 10 or file IO

Ei PROFITBRICKS

The laaS-Company.

Overall structure

Client Server
/dev/ibnbd0 /dev{sdb
block layer ibnbd_client.ko ibnbd_server.ko
IB transport ibtrs_client.ko ibtrs_server.ko

InfiniBand RDMA

e |[BTRS (InfiniBand transport)
o generic UAL for IB RDMA
o can be reused by a different block device or any application
utilizing request read/write RDMA semantics (i.e. replication
solution)

{:i PROFITBRICKS

The laaS-Company.

Module functions

IBNBD is responsible for the delivery of block 10 requests from client to storage
server. Uses IBTRS as its IB rdma transport layer

e Client on compute node:
o ibnbd_client.ko provides the mapped block devices (/dev/ibnbd<x>) and
prepares |O for the transfer.
o ibtrs_client.ko establishes connection to a server and executes rdma
operations requested by ibnbd

e Server on storage side:
o ibtrs_server.ko accepts connections from client, executes rdma transfers,
hands over received data to ibnbd_server.
o ibnbd_server.ko processes incoming IO requests and hands them over
down to the underlying block device (i.e. an /dev/sdb device)

E PROFITBRICKS

The laaS-Company.

Memory management, immediate field b

e C(lient-side server (DMA) memory management

Server reserves queue_depth chunks each max_io_size

big

Client is managing this memory

Allows to reduce number of RDMA operations per |O

Tradeoff between memory consumption vs. latency

client uses 32 bit imm field to tell server where transferred

data can be found

e server uses imm field to tell client which outstanding 10 is
completed

E PROFITBRICKS

The laaS-Company.

Transfer procedure

1. ibnbd_client
o converts incoming block request into an sg list with a header
2. ibtrs_client
o transfers data (write 10) or control (read 10) in a single rdma write
o uses 32 bit imm field to tell the server where the data can be found
5. ibtrs_server
o notifies ibnbd_server about an incoming IO request
4. ibnbd_server
o generates BIO and submits it to underlying device
o acknowledges the RDMA operation, when BIO comes back
5. ibtrs_server sends confirmation (write 1O) or data (read 10) back to client
6. ibtrs_client notifies ibnbd_client about a completed RDMA operation
/. ibnbd_client completes the original block request

Ei PROFITBRICKS

The laaS-Company.

Transfer procedure: read

i

ibnbd_client | ibtrs_client

Read block Buffer
request addresses
and control

header

imm

Complete points

request to request

RDMA Write w. imm>

<RDMA Write
<RDMA Write

<RDMA Write w. imm

ibtrs_server | ibnbd_server
imm points Submit BIO
to buffer
BIO
send buffers completed

e Same procedure as used by iISER or SRP: server initiates transfer
e Fast memory registration feature is used to reduce number of transfers

PROFITBRICKS

The laaS-Company.

Transfer procedure: write

i

ibnbd_client | ibtrs_client
Write block | send data
request and control
header
imm
Complete points
request to request

RDMA Write w. imm>

<RDMA Write w. imm

ibtrs_server | ibnbd_server
imm points Submit BIO
to buffer
BIO
send ack completed

e Different to iISER or SRP: Client initiates the transfer into a server buffer
e Only two RDMA operations

PROFITBRICKS

The laaS-Company.

Transfer procedure: write, IBNBD vs iSER/SRP

IBNBD

ISER / SRP

send data
and control
header

complete
request

client

RDMA Write >

<RDMA Write

{: PROFITBRICKS

The laaS-Company.

imm points send
to buffer control
with data.
submit BIO
send ack complete
request
server initiator

SCSI Write cmd >

<RDMA Read
<RDMA Read
<SCSI Resp

read data

send ack

target

Connection management b

“Session” is connecting a client with a server.

Consists of as many IB connections as CPUs on client.

Each IB connection: separate cq_vector (and IRQ).

Affinity of each IRQ is set to a separate CPU.

Server sends IO response on the same connection he got

the request on.

e |Interrupt on client is generated on the same cpu where the
|O was originally submitted.

e Reduce data access across different NUMA nodes

E PROFITBRICKS

The laaS-Company.

Queue Depth and MQ support

e Inflight on client side is limited by the number of DMA
buffers reserved on the server side

e All the ibnbd devices mapped from the same server share
the same remote buffers

e Fair sharing by making use of the shared tags feature

e MQ: As many hardware queues as CPUs - each IB
connection belonging to a session does in fact function as
a separate hardware queue.

E PROFITBRICKS

The laaS-Company.

Error handling

e No IO timeouts and no 10 retransmissions
e Heartbeats to detect unresponsive peers (i.e. kernel crash)
o RDMA might succeed even if CPU on remote is halted
e Reconnecting after an IB error
o Client keeps the devices and tries to reconnect
o Server closes all devices and destroys session
e APM Support
o Server is connected with two IB ports to two different
switches
o transparent failover in case of cable or IB switch failure

E PROFITBRICKS

The laaS-Company.

Outlook: Reliable Multicast

e Reliable multicast over InfiniBand UD Multicast

e |IBTRS API: Join several established sessions into one
“multicast” session

e Submit IO once - it will be confirmed after the 10 is
delivered to all servers in the group

e Useful for replication (i.e. mirror)

e Reduce load on the IB link connecting a compute node
with the IB switch

i: PROFITBRICKS

The laaS-Company.

Performance: Measurement setup

Mimic VMs running on different CPUs and accessing their devices.

client:
CPUO CPU1 CPU2 CPU64
fio fio fio fio
direct IOJ libaio, Ioc?l memory allocation policy
ibnbdO ibnbd1 ibnbd?2 ibnbd64
! i
QP QP QP QP
server:
ibtrs/ibnbd
nullbO nullb1 nullb2 nullb64
Ei PROFITBRICKS
The laaS-Company.

Original scalability problem

Reading IBNBD ws SRPT

1.1x10° T T T T T T
IBMBD RD KBS ~—@—

SRPT RD KE/S
1x10%

200000

800000

KBJS

700000

600000

500000

I 1 I 1 I
20 40 60 80 100 120 140
FIOs jobs: 1,2,4,8,16,32,64,128

400000

o g=——T—

Writing IBNBD vs SRPT, KB/S

1.1x108 T T T T T T
IBMBD WR KBS —ll—

SRPTWRKB/S — 1 —
1x108

900000

800000

KB[S

700000

500000

500000

400000

0 20 40 60 80 100 120 140
E PROFlTBRICKS FIOs jobs: 1,2,4,8,16,32,64,128

The laaS-Company.

+ 97.59% 0.00% 8 fio [.] io submit
+ 97.58% 0.00% 0 fio [k] sys io submit
+ 97.54% 0.01% 397 fio [k] do io submit
+ 97.48% 0.01% 397 fio [k] aio run iocb
+ 97.07% 0.03% 2059 fio [k] blkdev direct IO
+ 97.04% 0.00% 172 fio [k] _ blockdev direct IO
+ 96.99% 0.06% 3520 fio [k] do blockdev direct IO
+ 95.11% 0.00% 282 fio [k] submit bio
+ 95.09% 0.00% 168 fio [k] generic make request
+ 93.47% 0.04% 2577 fio [k] map sg
- 92.60% 92.60% 5786351 fio [k] raw spin lock irgsave
- _raw_spin lock irgsave
+ 50.39% map_ sg
+ 49.38% unmap_sg
+ 48.86% 0.00% 124 fio [k] blkdev write iter
48.85% 0.01% 518 fio [k] _ generic file write iter
48.82% 0.00% 269 fio [k] generic file direct write

E PROFITBRICKS

The laaS-Company.

*
1600 * - i
50; * &
* * * ¥ # ¥
‘_l{l‘ #*
D 1400 -, |
1200 +, .
#*
1000 i
900000 ; |
read + 800 !]] | | I
850000 ‘;; whte: % 0 20 40 60 80 100 120 140
g . nurmjobs
*
800000 | i
#*
750000 | ¢ _
* *
i #
m 700000 F |
v *
650000 | |
HE
600000 | * |
#*
550000 | " i
+ * * * "
500000 ' L I I L |
0 20 40 60 80 100 120 140
numjols

i: PROFITBRICKS

The laaS-Company.

IBNBD vs SRP, block io vs, fileio, NUMA effects

Bandwidth (write) vs. number of devices/processes

2000 ! T I I |
; ' ibnbd blockio ———
: § § g ibnbd fileio ———

srp fileio -
1600 :

1400

MB/s

1200

1000

800

600

0 8 16 24 32 40 48 56 64

number of devices (1 fio process per device, pinned)

E PROFITBRICKS

The laaS-Company.

numa-ctl —--hardware

NUMA effects

0O: 10 16 16 22 16 16 22

write performance on different numa nodes

2200 ! ! ! ! e HCA is on
| | 5 : -7, node 0 ———
e 815 node] — NUMA O
EDGG _ R . R el et L 1 e P
YRV YERTES i
y _._4 ; 'E 2 \
1600 _UJ ;m”““m@ ; ; ____________ 48-55, node 6 ——
) : 1 : ' ' 56-63, node 7 ———

AL | & B S TR }m m_é ; ém_”muné ; é o

MB/s

1200 L — o i S

1000

L — S T S S — (BN e .

VNS N NS TN N B

number of devices/processes

E PROFITBRICKS

The laaS-Company.

Summary: Major characteristics of the driver

e High throughput and low latency due to:
o Only two rdma messages per 1O
o Simplified client side server memory management
o Eliminated SCSI sublayer
e Simple configuration and handling
o Server side is completely passive: volumes do not need to be
explicitly exported
o Only IB port GID and device path needed on client side to map
a block device
o A device can be remapped automatically i.e. after storage
reboot
e Pinning of |O-related processing to the CPU of the producer

Ei PROFITBRICKS

The laaS-Company.

Existing Solutions

e SRP/SCST
o SCSI RDMA Protocol
o |ISER
o ISCSI extension for RDMA
o target executes RDMA operations
e accelio/nbdx
o server side in user space
o obsolete in favor of NVMEoF
e NVMEOF
o transports NVME commands
o target initiates RDMA transfers

E PROFITBRICKS

The laaS-Company.

Questions?

danil.kipnis@profitbricks.com

Ei PROFITBRICKS

The laaS-Company.

Backup: Test Hardware

e Mellanox Connnect X3 HCA
o dualport, 40 Gb/sec

e AMD 64 Cores
o AMD Opteron 6386 SE
o 8 NUMA nodes

E PROFITBRICKS

The laaS-Company.

Backup: Existing Solutions

i

SRP/SCST: SCSI RDMA Protocol

ISER: iISCSI Extensions for RDMA

o SCSI sub layer

o Only target executes RDMA operations
accelio/nbdx

o server side in user space, libaio, obsolete
NVMEoF

o transports NVME commands

o server executes RDMA operations

PROFITBRICKS

The laaS-Company.

Backup: fio configuration

[globall]

description=Emulation of Storage Server Access Pattern
bssplit=512/20:1k/16:2k/9:4k/12:8k/19:16k/10:32k/8:64k/4:128k/2
fadvise hint=0

rw=randrw:?2

direct=1

random distribution=zipf:1.2

size=1G

ioengine=libaio

iodepth=128

iodepth batch submit=128

lodepth batch complete=128

gtod reduce=1

group_ reporting=1

pinning options
cpus allowed=0-63
cpus_allowed policy=split

numa mem policy=local

E PROFITBRICKS

The laaS-Company.

