
Title 44pt sentence case

Affiliations 24pt sentence case

20pt sentence case

© ARM 2017

SCHED_DEADLINE: It’s Alive!

Juri Lelli

ELC North America 17, Portland (OR)

ARM Ltd.

02/21/2017

© ARM 2017 2

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

 Deadline scheduling (SCHED_DEADLINE)

 Why is development now happening (out of the blue?)

 Bandwidth reclaiming

 Frequency/CPU scaling of reservation parameters

 Coupling with frequency selection

 Group scheduling

 Future

© ARM 2017 3

Text 54pt sentence case CHAPER 1
What and Why

© ARM 2017 4

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

 Deadline scheduling (SCHED_DEADLINE)

 Why is development now happening (out of the blue?)

 Bandwidth reclaiming

 Frequency/CPU scaling of reservation parameters

 Coupling with frequency selection

 Group scheduling

 Future

© ARM 2017 5

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Deadline scheduling (previously on ...)

 mainline since v3.14

30 March 2014 (~3y ago)

 it’s not only about deadlines

 RT scheduling policy

 explicit per-task latency constraints

 avoids starvation

 enriches scheduler’s knowledge about

QoS requirements

 EDF + CBS

 resource reservation mechanism

 temporal isolation

 ELC16 presentation
https://goo.gl/OVspuI

Linux scheduler

deadline.c rt.c fair.c

SCHED_

DEADLINE

SCHED_RR

SCHED_FIFO

SCHED_

IDLE

SCHED_

BATCH

SCHED_

NORMAL

https://goo.gl/OVspuI

© ARM 2017 6

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Deadline scheduling (previously on ...)

 mainline since v3.14

30 March 2014 (~3y ago)

 it’s not only about deadlines

 RT scheduling policy

 explicit per-task latency constraints

 avoids starvation

 enriches scheduler’s knowledge about

QoS requirements

 EDF + CBS

 resource reservation mechanism

 temporal isolation

 ELC16 presentation
https://goo.gl/OVspuI

Linux scheduler

deadline.c rt.c fair.c

SCHED_

DEADLINE

SCHED_RR

SCHED_FIFO

SCHED_

IDLE

SCHED_

BATCH

SCHED_

NORMAL

https://goo.gl/OVspuI

© ARM 2017 7

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

 Deadline scheduling (SCHED_DEADLINE)

 Why is development now happening (out of the blue?)

 Bandwidth reclaiming

 Frequency/CPU scaling of reservation parameters

 Coupling with frequency selection

 Group scheduling

 Future

© ARM 2017 8

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Why is development now happening

 Energy Aware Scheduling (EAS)

 extends the Linux kernel scheduler and power management to make it fully

power/performance aware (https://goo.gl/vQbUOu)

 scheduler modifications pertain to SCHED_NORMAL (so far)

 Android Common Kernel

 EAS has been merged last year (https://goo.gl/FXCdAX)

 performance usually means meeting latency requirements

 considerable usage (and modifications) of SCHED_FIFO

 SCHED_DEADLINE seems to be a better fit

and mainline adoption of required changes should be less controversial

 Joint collaboration between ARM and Scuola Superiore Sant’Anna of Pisa

https://goo.gl/vQbUOu
https://goo.gl/FXCdAX

© ARM 2017 9

Text 54pt sentence case CHAPTER 2
Let’s reclaim!

© ARM 2017 10

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

 Deadline scheduling (SCHED_DEADLINE)

 Why is development now happening (out of the blue?)

 Bandwidth reclaiming

 Frequency/CPU scaling of reservation parameters

 Coupling with frequency selection

 Group scheduling

 Future

© ARM 2017 11

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming

 PROBLEM

 tasks’ bandwidth is fixed (can only be changed with sched_setattr())

 what if tasks occasionally need more bandwidth?

e.g., occasional workload fluctuations (network traffic, rendering of particularly heavy frame,

etc)

 SOLUTION (proposed*)

 bandwidth reclaiming: allow tasks to consume more than allocated

 up to a certain maximum fraction of CPU time

 if this doesn’t break others’ guarantees

* https://lkml.org/lkml/2016/12/30/107

© ARM 2017 12

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (cont.)

 Greedy Reclamation of Unused Bandwidth (GRUB)1

 3 components2

 tracking of active utilization

 modification of the accounting rule

 multiprocessor support (original algorithm was designed for UP)

1 - Greedy reclamation of unused bandwidth in constant-bandwidth servers - Giuseppe Lipari, Sanjoy K. Baruah (https://goo.gl/xl4CUk)

2 - Greedy CPU reclaiming for SCHED DEADLINE - Luca Abeni, Juri Lelli, Claudio Scordino, Luigi Palopoli (https://goo.gl/e8EC8q)

https://goo.gl/xl4CUk
https://goo.gl/e8EC8q

© ARM 2017 13

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (cont.)

 Tracking of active utilization

 Uact is increased by Qi/Ti when task wakes up

 0 lag time comes from CBS wakeup check:

 Uact is decreased by the same amount at 0 lag time

a timer is set to fire at this instant of time

 One Uact per CPU (rq->dl.running_bw)

iQ

iT

i

i

i
i T

Q

q
dlag 0 id

iq

i

i

i

i

T

Q

td

q




© ARM 2017 14

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (cont.)

 Tracking of active utilization

 Uact is increased by Qi/Ti when task wakes up

 0 lag time comes from CBS wakeup check:

 Uact is decreased by the same amount at 0 lag time

a timer is set to fire at this instant of time

 One Uact per CPU (rq->dl.running_bw)

iQ

iT

i

i

i
i T

Q

q
dlag 0 id

iq

i

i

i

i

T

Q

td

q




© ARM 2017 15

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (cont.)

 Modification of the accounting rule

 runtime -= delta_exec becomes runtime -= Uact * delta_exec

 but this can eat up 100% of CPU time! (starving non-DL tasks)

 e.g., a 5sec every 10sec task that can reclaim...

 so, in reality accounting will probably become
runtime -= Uact/Umax * delta_exec

task_tick_dl()

-> update_curr_dl()

dequeue_task_dl()

-> update_curr_dl()

© ARM 2017 16

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (cont.)

 Modification of the accounting rule

 runtime -= delta_exec becomes runtime -= Uact * delta_exec

 but this can eat up 100% of CPU time! (starving non-DL tasks)

 e.g., a 5sec every 10sec task that can reclaim...

 so, in reality accounting will probably become
runtime -= Uact/Umax * delta_exec

task_tick_dl()

-> update_curr_dl()

dequeue_task_dl()

-> update_curr_dl()

© ARM 2017 17

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (cont.)

 e.g., a 5sec every 10sec task that can’t reclaim...

 VS, a 5sec every 10sec task that can reclaim (without Umax cap)

Uact = 0.5 -> runtime -= delta*0.5 -> deplete in (1/0.5)*runtime = 10sec

Umax = 0.9 -> runtime -= delta*(0.5/0.9) -> deplete in (0.9/0.5)*runtime = 9sec

leaving 1sec for otherwise sad guys :-)

© ARM 2017 18

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (cont.)

 Multiprocessor support

 ISSUE (one of a few)

 task i wakes up and is accounted for

 it then blocks and timer is set to fire at 0 lag time

lag0
i

i
k

T

Q
Uact 

kCPU

jCPU

© ARM 2017 19

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (cont.)

 Multiprocessor support

 ISSUE (one of a few)

 task i wakes up again, before 0 lag

 but it is migrated on a different CPU

 0 lag timer cancelled, but no changes to both CPUs’ Uact

lag0

kCPU

jCPU

© ARM 2017 20

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (cont.)

 Multiprocessor support

 ISSUE (one of a few)

 task i blocks again (on CPUj)

 no change on CPUk’s Uact and CPUj’s Uact becomes negative!

kCPU

jCPU

0
i

i
j

T

Q
Uact

)()1(tUacttUact kk 

© ARM 2017 21

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (cont.)

 Multiprocessor support

 SOLUTION – migrate task’s utilization together with him

 0 lag timer cancelled, and...

 utilization is instantaneously migrated as well

 so that when task i blocks again everything is fine

lag0

kCPU

jCPU

i

i
k

T

Q
Uact 

i

i
j

T

Q
Uact 

© ARM 2017 22

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (results)

 Task1 (6ms, 20ms)

constant execution time

of 5ms

 Task2 (45ms, 260ms)

experiences occasional

variances (35ms-52ms)

C
D

F

Response time (ms) T2’s reservation period

© ARM 2017 23

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (results)

 Task1 (6ms, 20ms)

constant execution time

of 5ms

 Task2 (45ms, 260ms)

experiences occasional

variances (35ms-52ms)

 Cumulative Distribution

Function (CDF)

probability that Response

time will be less or equal to

x ms

C
D

F

Response time (ms) T2’s reservation period

© ARM 2017 24

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (results)

 Task1 (6ms, 20ms)

constant execution time

of 5ms

 Task2 (45ms, 260ms)

experiences occasional

variances (35ms-52ms)

 Plain CBS

T2’s response time bigger

then reservation period

(~25%)

C
D

F

Response time (ms) T2’s reservation period

© ARM 2017 25

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Bandwidth Reclaiming (results)

 Task1 (6ms, 20ms)

constant execution time

of 5ms

 Task2 (45ms, 260ms)

experiences occasional

variances (35ms-52ms)

 GRUB

T2 always completes before

reservation period (using

bandwidth left by T1)

C
D

F

Response time (ms) T2’s reservation period

© ARM 2017 26

Text 54pt sentence case CHAPTER 3
Rock around the Clock (... and CPU)

© ARM 2017 27

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

 Deadline scheduling (SCHED_DEADLINE)

 Why is development now happening (out of the blue?)

 Bandwidth reclaiming

 Frequency/CPU scaling of reservation parameters

 Coupling with frequency selection

 Group scheduling

 Future

© ARM 2017 28

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Frequency/CPU scaling

 Reservation runtime needs scaling according to frequency and CPU max

capacity

 for frequency, use the ratio between max and current capacity to enlarge the

runtime granted to a task at admission control

 similarly for CPU, but using the ratio between biggest and current CPU capacity

capacitycurr

capacitymax
runtimeoriginalruntimescaled

_

_
__ 

© ARM 2017 29

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Frequency scaling (example)

 HiKey board has 5 Operating Performance Points (OPPs)

 Running a task inside a 12ms/100ms reservation at min frequency means

extending its runtime up to

msmsruntimescaled 69
178

1024
12_ 

Frequency (MHz) Capacity % w.r.t. max

208 178 17

432 369 36

729 622 61

960 819 80

1200 1024 100

© ARM 2017 30

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Frequency scaling (example cont.)

 10ms/100ms task inside a 12ms/100ms reservation (at max freq)

 10ms/100ms task inside a 12ms/100ms reservation (at min freq)

 20ms/100ms (bad guy!) task inside a 12ms/100ms reservation (at min freq)

100ms

10ms

100ms

~60ms

100ms

~69ms throttled (~31ms)

© ARM 2017 31

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

 Deadline scheduling (SCHED_DEADLINE)

 Why is development now happening (out of the blue?)

 Bandwidth reclaiming

 Frequency/CPU scaling of reservation parameters

 Coupling with frequency selection

 Group scheduling

 Future

© ARM 2017 32

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Driving frequency selection

 scaling clock frequency, while meeting tasks’ requirements (deadlines)

 scheduler driven CPU clock frequency selection

 schedutil cpufreq governor

SCHED_NORMAL – uses util_avg (PELT)

SCHED_FIFO/RR and SCHED_DEADLINE – go to max!

 once bandwidth reclaiming is in*

 use rq->dl.running_bw as SCHED_DEADLINE per-CPU utilization contribution (sum)

 move CPU frequency selection triggering points (where running_bw changes)

 allow sugov kworker thread(s) to always preempt SCHED_DEADLINE tasks (and lower

priority) – for !fast_switch_enabled drivers

* Claudio Scordino (Evidence Srl) is helping with this.

© ARM 2017 33

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Driving frequency selection

 scaling clock frequency, while meeting tasks’ requirements (deadlines)

 scheduler driven CPU clock frequency selection

 schedutil cpufreq governor

SCHED_NORMAL – uses util_avg (PELT)

SCHED_FIFO/RR and SCHED_DEADLINE – go to max!

 once bandwidth reclaiming is in*

 use rq->dl.running_bw as SCHED_DEADLINE per-CPU utilization contribution (sum)

 move CPU frequency selection triggering points (where running_bw changes)

 allow sugov kworker thread(s) to always preempt SCHED_DEADLINE tasks (and lower

priority) – for !fast_switch_enabled drivers

* Claudio Scordino (Evidence Srl) is helping with this.

© ARM 2017 34

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Driving frequency selection (example)

 50ms/100ms inside 52ms/100ms + 10ms/100ms inside 12ms/100ms

 rt-app1 based measure of “performance”

1 - https://github.com/scheduler-tools/rt-app

measured slack

config. runtime config. slack

config. period

slackconfig

slackmeasured
indexperf

_

_
_ 

 perf_index close to 1.0 means almost optimal

performance

 negative perf_index means deadline misses

© ARM 2017 35

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Driving frequency selection (example)

 50ms/100ms inside 52ms/100ms + 10ms/100ms inside 12ms/100ms

 deadlines are not missed while frequency is not at max (960MHz mostly)
complete set of results available at https://gist.github.com/jlelli/22196e46e4ff1fcdb02a9944261d90d2

https://gist.github.com/jlelli/22196e46e4ff1fcdb02a9944261d90d2

© ARM 2017 36

Text 54pt sentence case CHAPTER 4
Groupies

© ARM 2017 37

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

 Deadline scheduling (SCHED_DEADLINE)

 Why is development now happening (out of the blue?)

 Bandwidth reclaiming

 Frequency/CPU scaling of reservation parameters

 Coupling with frequency selection

 Group scheduling

 Future

© ARM 2017 38

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Group scheduling

 Currently, one to one association between tasks and reservations

 Sometime it might be better/easier to group a set of tasks into the same

reservation

 virtual machine threads

 rendering pipeline

 legacy application (that for example needs forking)

 high priority driver kthread(s)

 Hierarchical/Group scheduling1,2,3

 cgroups support

 temporal isolation between groups (and single entities)

1 - A Framework for Hierarchical Scheduling on Multiprocessors - Giuseppe Lipari, Enrico Bini (https://goo.gl/veKrJy)

2 - Hierarchical Multiprocessor CPU Reservations for the Linux Kernel - F. Checconi, T. Cucinotta, D. Faggioli, G. Lipari (https://goo.gl/PIJaQe)

3 - The IRMOS real-time scheduler - T. Cucinotta, F. Checconi (https://lwn.net/Articles/398470/)

https://goo.gl/veKrJy
https://goo.gl/PIJaQe
https://lwn.net/Articles/398470/

© ARM 2017 39

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Group scheduling

 Hierarchical means

 first level is EDF

 second level is RT (FIFO/RR)

 Should eventually supplant

RT-throttling

EDF

FIFO FIFO

T1 T2 T3 T4

© ARM 2017 40

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Group scheduling

 Hierarchical means

 first level is EDF

 second level is RT (FIFO/RR)

 Should eventually supplant

RT-throttling

EDF

FIFO FIFO

T1 T2 T3 T4

© ARM 2017 41

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Group scheduling

 On multiprocessors

 One DEADLINE group entity per CPU

 Coexists with single DEADLINE entities

T1 T2 T3 T4 T5

T6 T7

© ARM 2017 42

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Group scheduling

 On multiprocessors

 One DEADLINE group entity per CPU

 Coexists with single DEADLINE entities

 Sub RT entities get migrated according to G-FP (push/pull)

T1 T2 T3 T4 T5

T6 T7

T5

© ARM 2017 43

Text 54pt sentence case CHAPTER 5
It IS bright!

© ARM 2017 44

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Agenda

 Deadline scheduling (SCHED_DEADLINE)

 Why is development now happening (out of the blue?)

 Bandwidth reclaiming

 Frequency/CPU scaling of reservation parameters

 Coupling with frequency selection

 Group scheduling

 Future

© ARM 2017 45

Title 40pt sentence case

Bullets 24pt sentence case

bullets 20pt sentence case

Future

 NEAR

 experimenting with Android

 reclaiming by demotion towards lower priority class

 capacity awareness (for heterogeneous systems)

 energy awareness (Energy Aware Scheduling for DEADLINE)

 NEAR(...ISH)

 support single CPU affinity

 enhanced priority inheritance (M-BWI most probably)

 dynamic feedback mechanism (adapt reservation parameters to task’ needs)

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited

(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be

trademarks of their respective owners.

Copyright © 2017 ARM Limited

© ARM 2017

Get involved!

Shoot me an email <juri.lelli@arm.com>

Ask questions on LKML, linux-rt-users or eas-dev

Come join us @ OSPM-summit (https://goo.gl/ngTcgB)

... maybe remotely :-)

And don’t forget to collect your prizes!!!

