
Title 44pt sentence case 

Affiliations 24pt sentence case 

20pt sentence case 

© ARM 2017  

SCHED_DEADLINE: It’s Alive! 

Juri Lelli 

ELC North America 17, Portland (OR) 

ARM Ltd. 

02/21/2017 



© ARM 2017  2 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Agenda 

 Deadline scheduling (SCHED_DEADLINE) 

 Why is development now happening (out of the blue?) 

 Bandwidth reclaiming 

 Frequency/CPU scaling of reservation parameters 

 Coupling with frequency selection 

 Group scheduling 

 Future 



© ARM 2017  3 

Text 54pt sentence case CHAPER 1 
What and Why 



© ARM 2017  4 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Agenda 

 Deadline scheduling (SCHED_DEADLINE) 

 Why is development now happening (out of the blue?) 

 Bandwidth reclaiming 

 Frequency/CPU scaling of reservation parameters 

 Coupling with frequency selection 

 Group scheduling 

 Future 



© ARM 2017  5 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Deadline scheduling (previously on ...) 

 mainline since v3.14 

30 March 2014 (~3y ago) 

 it’s not only about deadlines 

 RT scheduling policy 

 explicit per-task latency constraints 

 avoids starvation 

 enriches scheduler’s knowledge about 

QoS requirements 

 EDF + CBS 

 resource reservation mechanism 

 temporal isolation 

 ELC16 presentation 
https://goo.gl/OVspuI 

 

Linux scheduler 

deadline.c rt.c fair.c 

SCHED_ 

DEADLINE 

SCHED_RR 

SCHED_FIFO 

SCHED_ 

IDLE 

SCHED_ 

BATCH 

SCHED_ 

NORMAL 

https://goo.gl/OVspuI


© ARM 2017  6 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Deadline scheduling (previously on ...) 

 mainline since v3.14 

30 March 2014 (~3y ago) 

 it’s not only about deadlines 

 RT scheduling policy 

 explicit per-task latency constraints 

 avoids starvation 

 enriches scheduler’s knowledge about 

QoS requirements 

 EDF + CBS 

 resource reservation mechanism 

 temporal isolation 

 ELC16 presentation 
https://goo.gl/OVspuI 

 

Linux scheduler 

deadline.c rt.c fair.c 

SCHED_ 

DEADLINE 

SCHED_RR 

SCHED_FIFO 

SCHED_ 

IDLE 

SCHED_ 

BATCH 

SCHED_ 

NORMAL 

https://goo.gl/OVspuI


© ARM 2017  7 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Agenda 

 Deadline scheduling (SCHED_DEADLINE) 

 Why is development now happening (out of the blue?) 

 Bandwidth reclaiming 

 Frequency/CPU scaling of reservation parameters 

 Coupling with frequency selection 

 Group scheduling 

 Future 



© ARM 2017  8 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Why is development now happening 

 Energy Aware Scheduling (EAS) 

 extends the Linux kernel scheduler and power management to make it fully 

power/performance aware (https://goo.gl/vQbUOu) 

 scheduler modifications pertain to SCHED_NORMAL (so far) 

 Android Common Kernel 

 EAS has been merged last year (https://goo.gl/FXCdAX) 

 performance usually means meeting latency requirements 

 considerable usage (and modifications) of SCHED_FIFO 

 SCHED_DEADLINE seems to be a better fit 

and mainline adoption of required changes should be less controversial 

 

 Joint collaboration between ARM and Scuola Superiore Sant’Anna of Pisa 

https://goo.gl/vQbUOu
https://goo.gl/FXCdAX


© ARM 2017  9 

Text 54pt sentence case CHAPTER 2 
Let’s reclaim! 



© ARM 2017  10 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Agenda 

 Deadline scheduling (SCHED_DEADLINE) 

 Why is development now happening (out of the blue?) 

 Bandwidth reclaiming 

 Frequency/CPU scaling of reservation parameters 

 Coupling with frequency selection 

 Group scheduling 

 Future 



© ARM 2017  11 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming 

 PROBLEM 

 tasks’ bandwidth is fixed (can only be changed with sched_setattr()) 

 what if tasks occasionally need more bandwidth? 

e.g., occasional workload fluctuations (network traffic, rendering of particularly heavy frame, 

etc) 

 

 SOLUTION (proposed*) 

 bandwidth reclaiming: allow tasks to consume more than allocated 

 up to a certain maximum fraction of CPU time 

 if this doesn’t break others’ guarantees 

 
* https://lkml.org/lkml/2016/12/30/107 



© ARM 2017  12 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (cont.) 

 Greedy Reclamation of Unused Bandwidth (GRUB)1 

 3 components2 

 tracking of active utilization 

 modification of the accounting rule 

 multiprocessor support (original algorithm was designed for UP) 

 

 

 

 

 

 

 

 

1 - Greedy reclamation of unused bandwidth in constant-bandwidth servers - Giuseppe Lipari, Sanjoy K. Baruah (https://goo.gl/xl4CUk) 

2 - Greedy CPU reclaiming for SCHED DEADLINE - Luca Abeni, Juri Lelli, Claudio Scordino, Luigi Palopoli (https://goo.gl/e8EC8q)    

https://goo.gl/xl4CUk
https://goo.gl/e8EC8q


© ARM 2017  13 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (cont.) 

 Tracking of active utilization 
 

 

 

 

 

 

 

 

 

 Uact is increased by Qi/Ti when task wakes up 

 0 lag time comes from CBS wakeup check: 

 Uact is decreased by the same amount at 0 lag time 

a timer is set to fire at this instant of time 

 One Uact per CPU (rq->dl.running_bw) 

iQ

iT

i

i

i
i T

Q

q
dlag 0 id

iq

i

i

i

i

T

Q

td

q






© ARM 2017  14 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (cont.) 

 Tracking of active utilization 
 

 

 

 

 

 

 

 

 

 Uact is increased by Qi/Ti when task wakes up 

 0 lag time comes from CBS wakeup check: 

 Uact is decreased by the same amount at 0 lag time 

a timer is set to fire at this instant of time 

 One Uact per CPU (rq->dl.running_bw) 

iQ

iT

i

i

i
i T

Q

q
dlag 0 id

iq

i

i

i

i

T

Q

td

q






© ARM 2017  15 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (cont.) 

 Modification of the accounting rule 
 

 

 

 

 

 

 

 

 

 runtime -= delta_exec becomes runtime -= Uact * delta_exec 

 but this can eat up 100% of CPU time! (starving non-DL tasks) 

 e.g., a 5sec every 10sec task that can reclaim... 

 so, in reality accounting will probably become 
runtime -= Uact/Umax * delta_exec 

task_tick_dl() 

-> update_curr_dl() 

dequeue_task_dl() 

-> update_curr_dl() 



© ARM 2017  16 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (cont.) 

 Modification of the accounting rule 
 

 

 

 

 

 

 

 

 

 runtime -= delta_exec becomes runtime -= Uact * delta_exec 

 but this can eat up 100% of CPU time! (starving non-DL tasks) 

 e.g., a 5sec every 10sec task that can reclaim... 

 so, in reality accounting will probably become 
runtime -= Uact/Umax * delta_exec 

task_tick_dl() 

-> update_curr_dl() 

dequeue_task_dl() 

-> update_curr_dl() 



© ARM 2017  17 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (cont.) 

 e.g., a 5sec every 10sec task that can’t reclaim... 

 

 

 

 VS, a 5sec every 10sec task that can reclaim (without Umax cap) 

 

 

 
 

Uact = 0.5 -> runtime -= delta*0.5 -> deplete in (1/0.5)*runtime = 10sec 

Umax = 0.9 -> runtime -= delta*(0.5/0.9) -> deplete in (0.9/0.5)*runtime = 9sec 

leaving 1sec for otherwise sad guys :-) 



© ARM 2017  18 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (cont.) 

 Multiprocessor support 

 ISSUE (one of a few) 

 

 

 

 

 

 

 

 task i wakes up and is accounted for 

 it then blocks and timer is set to fire at 0 lag time 

lag0
i

i
k

T

Q
Uact 

kCPU

jCPU



© ARM 2017  19 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (cont.) 

 Multiprocessor support 

 ISSUE (one of a few) 

 

 

 

 

 

 

 task i wakes up again, before 0 lag 

 but it is migrated on a different CPU 

 0 lag timer cancelled, but no changes to both CPUs’ Uact 

lag0

kCPU

jCPU



© ARM 2017  20 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (cont.) 

 Multiprocessor support 

 ISSUE (one of a few) 

 

 

 

 

 

 

 task i blocks again (on CPUj) 

 no change on CPUk’s Uact and CPUj’s Uact becomes negative! 

kCPU

jCPU

0
i

i
j

T

Q
Uact

)()1( tUacttUact kk 



© ARM 2017  21 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (cont.) 

 Multiprocessor support 

 SOLUTION – migrate task’s utilization together with him 

 

 

 

 

 

 

 0 lag timer cancelled, and... 

 utilization is instantaneously migrated as well 

 so that when task i blocks again everything is fine 

lag0

kCPU

jCPU

i

i
k

T

Q
Uact 

i

i
j

T

Q
Uact 



© ARM 2017  22 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (results) 

 Task1 (6ms, 20ms) 

constant execution time 

of 5ms 

 Task2 (45ms, 260ms) 

experiences occasional 

variances (35ms-52ms) 

C
D

F
 

Response time (ms) T2’s reservation period 



© ARM 2017  23 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (results) 

 Task1 (6ms, 20ms) 

constant execution time 

of 5ms 

 Task2 (45ms, 260ms) 

experiences occasional 

variances (35ms-52ms) 

 

 Cumulative Distribution 

Function (CDF) 

probability that Response 

time will be less or equal to 

x ms 

C
D

F
 

Response time (ms) T2’s reservation period 



© ARM 2017  24 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (results) 

 Task1 (6ms, 20ms) 

constant execution time 

of 5ms 

 Task2 (45ms, 260ms) 

experiences occasional 

variances (35ms-52ms) 

 

 

 Plain CBS 

T2’s response time bigger 

then reservation period 

(~25%) 

C
D

F
 

Response time (ms) T2’s reservation period 



© ARM 2017  25 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Bandwidth Reclaiming (results) 

 Task1 (6ms, 20ms) 

constant execution time 

of 5ms 

 Task2 (45ms, 260ms) 

experiences occasional 

variances (35ms-52ms) 

 

 

 GRUB 

T2 always completes before 

reservation period (using 

bandwidth left by T1) 

C
D

F
 

Response time (ms) T2’s reservation period 



© ARM 2017  26 

Text 54pt sentence case CHAPTER 3 
Rock around the Clock (... and CPU) 



© ARM 2017  27 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Agenda 

 Deadline scheduling (SCHED_DEADLINE) 

 Why is development now happening (out of the blue?) 

 Bandwidth reclaiming 

 Frequency/CPU scaling of reservation parameters 

 Coupling with frequency selection 

 Group scheduling 

 Future 



© ARM 2017  28 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Frequency/CPU scaling 

 Reservation runtime needs scaling according to frequency and CPU max 

capacity 

 for frequency, use the ratio between max and current capacity to enlarge the 

runtime granted to a task at admission control 

 

 

 

 

 similarly for CPU, but using the ratio between biggest and current CPU capacity 

 

 

capacitycurr

capacitymax
runtimeoriginalruntimescaled

_

_
__ 



© ARM 2017  29 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Frequency scaling (example) 

 HiKey board has 5 Operating Performance Points (OPPs) 

 

 

 

 

 

 

 

 Running a task inside a 12ms/100ms reservation at min frequency means 

extending its runtime up to 

 

 

 

msmsruntimescaled 69
178

1024
12_ 

Frequency (MHz) Capacity % w.r.t. max 

208 178 17 

432 369 36 

729 622 61 

960 819 80 

1200 1024 100 



© ARM 2017  30 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Frequency scaling (example cont.) 

 10ms/100ms task inside a 12ms/100ms reservation (at max freq) 

 

 

 

 10ms/100ms task inside a 12ms/100ms reservation (at min freq) 

 

 

 

 20ms/100ms (bad guy!) task inside a 12ms/100ms reservation (at min freq) 

 

 

 

100ms 

10ms 

100ms 

~60ms 

100ms 

~69ms throttled (~31ms) 



© ARM 2017  31 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Agenda 

 Deadline scheduling (SCHED_DEADLINE) 

 Why is development now happening (out of the blue?) 

 Bandwidth reclaiming 

 Frequency/CPU scaling of reservation parameters 

 Coupling with frequency selection 

 Group scheduling 

 Future 



© ARM 2017  32 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Driving frequency selection 

 scaling clock frequency, while meeting tasks’ requirements (deadlines) 

 scheduler driven CPU clock frequency selection 

 schedutil cpufreq governor 

SCHED_NORMAL – uses util_avg (PELT) 

SCHED_FIFO/RR and SCHED_DEADLINE – go to max! 

 

 once bandwidth reclaiming is in* 

 use rq->dl.running_bw as SCHED_DEADLINE per-CPU utilization contribution (sum) 

 move CPU frequency selection triggering points (where running_bw changes) 

 allow sugov kworker thread(s) to always preempt SCHED_DEADLINE tasks (and lower 

priority) – for !fast_switch_enabled drivers 

 

 
* Claudio Scordino (Evidence Srl) is helping with this. 



© ARM 2017  33 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Driving frequency selection 

 scaling clock frequency, while meeting tasks’ requirements (deadlines) 

 scheduler driven CPU clock frequency selection 

 schedutil cpufreq governor 

SCHED_NORMAL – uses util_avg (PELT) 

SCHED_FIFO/RR and SCHED_DEADLINE – go to max! 

 

 once bandwidth reclaiming is in* 

 use rq->dl.running_bw as SCHED_DEADLINE per-CPU utilization contribution (sum) 

 move CPU frequency selection triggering points (where running_bw changes) 

 allow sugov kworker thread(s) to always preempt SCHED_DEADLINE tasks (and lower 

priority) – for !fast_switch_enabled drivers 

 

 
* Claudio Scordino (Evidence Srl) is helping with this. 



© ARM 2017  34 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Driving frequency selection (example) 

 50ms/100ms inside 52ms/100ms + 10ms/100ms inside 12ms/100ms 

 rt-app1 based measure of “performance” 

 

 

 

 

 

 

 

 
 

1 - https://github.com/scheduler-tools/rt-app 

measured slack 

config. runtime config. slack 

config. period 

slackconfig

slackmeasured
indexperf

_

_
_ 

 perf_index close to 1.0 means almost optimal 

performance 

 negative perf_index means deadline misses 

 



© ARM 2017  35 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Driving frequency selection (example) 

 50ms/100ms inside 52ms/100ms + 10ms/100ms inside 12ms/100ms 

 

 

 

 

 

 

 

 

 

 deadlines are not missed while frequency is not at max (960MHz mostly) 
complete set of results available at https://gist.github.com/jlelli/22196e46e4ff1fcdb02a9944261d90d2  

https://gist.github.com/jlelli/22196e46e4ff1fcdb02a9944261d90d2


© ARM 2017  36 

Text 54pt sentence case CHAPTER 4 
Groupies 



© ARM 2017  37 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Agenda 

 Deadline scheduling (SCHED_DEADLINE) 

 Why is development now happening (out of the blue?) 

 Bandwidth reclaiming 

 Frequency/CPU scaling of reservation parameters 

 Coupling with frequency selection 

 Group scheduling 

 Future 



© ARM 2017  38 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Group scheduling 

 Currently, one to one association between tasks and reservations 

 Sometime it might be better/easier to group a set of tasks into the same 

reservation 

 virtual machine threads 

 rendering pipeline 

 legacy application (that for example needs forking) 

 high priority driver kthread(s) 

 Hierarchical/Group scheduling1,2,3 

 cgroups support 

 temporal isolation between groups (and single entities) 

 
1 - A Framework for Hierarchical Scheduling on Multiprocessors - Giuseppe Lipari, Enrico Bini (https://goo.gl/veKrJy) 

2 - Hierarchical Multiprocessor CPU Reservations for the Linux Kernel - F. Checconi, T. Cucinotta, D. Faggioli, G. Lipari (https://goo.gl/PIJaQe) 

3 - The IRMOS real-time scheduler - T. Cucinotta, F. Checconi (https://lwn.net/Articles/398470/) 

https://goo.gl/veKrJy
https://goo.gl/PIJaQe
https://lwn.net/Articles/398470/


© ARM 2017  39 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Group scheduling 

 Hierarchical means 

 first level is EDF 

 second level is RT (FIFO/RR) 

 

 Should eventually supplant 

RT-throttling 

EDF 

FIFO FIFO 

T1 T2 T3 T4 



© ARM 2017  40 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Group scheduling 

 Hierarchical means 

 first level is EDF 

 second level is RT (FIFO/RR) 

 

 Should eventually supplant 

RT-throttling 

EDF 

FIFO FIFO 

T1 T2 T3 T4 



© ARM 2017  41 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Group scheduling 

 On multiprocessors 

 

 

 

 

 

 

 

 One DEADLINE group entity per CPU 

 Coexists with single DEADLINE entities 

T1 T2 T3 T4 T5 

T6 T7 



© ARM 2017  42 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Group scheduling 

 On multiprocessors 

 

 

 

 

 

 

 

 One DEADLINE group entity per CPU 

 Coexists with single DEADLINE entities 

 Sub RT entities get migrated according to G-FP (push/pull) 

T1 T2 T3 T4 T5 

T6 T7 

T5 



© ARM 2017  43 

Text 54pt sentence case CHAPTER 5 
It IS bright! 



© ARM 2017  44 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Agenda 

 Deadline scheduling (SCHED_DEADLINE) 

 Why is development now happening (out of the blue?) 

 Bandwidth reclaiming 

 Frequency/CPU scaling of reservation parameters 

 Coupling with frequency selection 

 Group scheduling 

 Future 



© ARM 2017  45 

Title 40pt sentence case 

Bullets 24pt sentence case 

bullets 20pt sentence case 

Future 

 NEAR 

 experimenting with Android 

 reclaiming by demotion towards lower priority class 

 capacity awareness (for heterogeneous systems) 

 energy awareness (Energy Aware Scheduling for DEADLINE) 

 

 NEAR(...ISH) 

 support single CPU affinity 

 enhanced priority inheritance (M-BWI most probably) 

 dynamic feedback mechanism (adapt reservation parameters to task’ needs) 

 

 



The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited 

(or its subsidiaries) in the EU and/or elsewhere.  All rights reserved.  All other marks featured may be 

trademarks of their respective owners. 

Copyright © 2017 ARM Limited 

 

© ARM 2017  

Get involved! 

 

Shoot me an email <juri.lelli@arm.com> 

Ask questions on LKML, linux-rt-users or eas-dev 

Come join us @ OSPM-summit (https://goo.gl/ngTcgB) 

... maybe remotely :-) 

 

 

And don’t forget to collect your prizes!!! 


