SCHED DEADLINE: It’s Alive!

ARM Juri Lell

ARM Ltd.

ELC North America |7, Portland (OR)
02/21/2017

©ARM 2017

Agenda

Deadline scheduling (SCHED DEADLINE)
Why is development now happening (out of the blue?)

Bandwidth reclaiming

Frequency/CPU scaling of reservation parameters

Coupling with frequency selection

Group scheduling
Future

©ARM 2017 ARM

CHAPER |
What and Why

ARM

Agenda

Deadline scheduling (SCHED DEADLINE)
Why is development now happening (out of the blue?)

Bandwidth reclaiming

Frequency/CPU scaling of reservation parameters

Coupling with frequency selection

Group scheduling
Future

©ARM 2017 ARM

Deadline scheduling (previously on ...)

= mainline since v3.14
30 March 2014 (~3y ago)

= it’s not only about deadlines
= RT scheduling policy]

SCHED_
DEADLINE

explicit per-task latency constraints b
NORMAL

= avoids starvation \

= enriches scheduler’s knowledge about '
QoS requirements

- EDF + CBS

= resource reservation mechanism

= temporal isolation

= ELCI6 presentation Linux scheduler
https://goo.gl/OVspul

©ARM 2017 ARM

https://goo.gl/OVspuI

Deadline scheduling (previously on ...)

= mainline since v3.14
30 March 2014 (~3y ago)

= it’s not only about deadlines
= RT scheduling policy]

SCHED_
DEADLINE

explicit per-task latency constraints b
NORMAL

= avoids starvation \

= enriches scheduler’s ledge about '

QoS requirements
- EDF + CBS

= resource reservation mechanism

= temporal isolation

= ELCI6 presentation Linux scheduler
https://goo.gl/OVspul

©ARM 2017 ARM

https://goo.gl/OVspuI

Agenda

Deadline scheduling (SCHED _DEADLINE)
Why is development now happening (out of the blue?)

Bandwidth reclaiming

Frequency/CPU scaling of reservation parameters

Coupling with frequency selection

Group scheduling
Future

©ARM 2017 ARM

Why is development now happening

= Energy Aware Scheduling (EAS)

= extends the Linux kernel scheduler and power management to make it fully
power/performance aware (https://goo.gl/vObUOu)

= scheduler modifications pertain to SCHED_NORMAL (so far)

» Android Common Kernel
= EAS has been merged last year (https://goo.gl/FXCdAX)
= performance usually means meeting latency requirements
= considerable usage (and modifications) of SCHED FIFO

= SCHED_DEADLINE seems to be a better fit
and mainline adoption of required changes should be less controversial

= Joint collaboration between ARM and Scuola Superiore Sant’Anna of Pisa

©ARM 2017 ARM

https://goo.gl/vQbUOu
https://goo.gl/FXCdAX

CHAPTER 2
Let’s reclaim!

ARM

Agenda

Deadline scheduling (SCHED _DEADLINE)
Why is development now happening (out of the blue?)

Bandwidth reclaiming

Frequency/CPU scaling of reservation parameters

Coupling with frequency selection

Group scheduling
Future

©ARM 2017 ARM

Bandwidth Reclaiming

- PROBLEM

= tasks’ bandwidth is fixed (can only be changed with sched setattr())

= what if tasks occasionally need more bandwidth!?
e.g., occasional workload fluctuations (network traffic, rendering of particularly heavy frame,
etc)

= SOLUTION (proposed®)

= bandwidth reclaiming: allow tasks to consume more than allocated
= up to a certain maximum fraction of CPU time

= if this doesn’t break others’ guarantees

* https://lkml.org/lkml/2016/12/30/107

©ARM 2017

ARM

Bandwidth Reclaiming (cont.)

= Greedy Reclamation of Unused Bandwidth (GRUB)'
= 3 components?

= tracking of active utilization
= modification of the accounting rule

= multiprocessor support (original algorithm was designed for UP)

| - Greedy reclamation of unused bandwidth in constant-bandwidth servers - Giuseppe Lipari, Sanjoy K. Baruah (https://goo.gl/x|14CUk)
2 - Greedy CPU reclaiming for SCHED DEADLINE - Luca Abeni, Juri Lelli, Claudio Scordino, Luigi Palopoli (https://goo.gl/e8EC8q)

12 ©ARM20I17 ARM

https://goo.gl/xl4CUk
https://goo.gl/e8EC8q

Bandwidth Reclaiming (cont.)

Tracking of active utilization

Uact is increased by Qi/Ti when task wakes up
0 lag time comes from CBS wakeup check: ﬁ<%

Uact is decreased by the same amount at 0 lag time
a timer is set to fire at this instant of time

One Uact per CPU (rg->d1.running bw)

©ARM 2017

ARM

Bandwidth Reclaiming (cont.)

Tracking of active utilization

Uact is increased by Qi/Ti when task wakes up
0 lag time comes from CBS wakeup check: ﬁ<%

Uact is decreased by the same amount at 0 lag time
a timer is set to fire at this instant of time

One Uact per CPU (rg->d1.running bw)

©ARM 2017 ARM

Bandwidth Reclaiming (cont.)

= Modification of the accounting rule

task tick dl() dequeue task dl ()
-> update curr dl () -> update curr dl()

- runtime -= delta exec becomes runtime -= Uact * delta exec
= but this can eat up 100% of CPU time! (starving non-DL tasks)
= e.g.,a 5sec every |0sec task that can reclaim...

= 5o, in reality accounting will probably become
runtime -= Uact/Umax * delta exec

©ARM 2017 ARM

Bandwidth Reclaiming (cont.)

= Modification of the accounting rule

task tick dl() dequeue task dl ()
-> update curr dl () -> update curr dl()

- runtime -= delta exec becomes runtime -= Uact * delta exec
= but this can eat up 100% of CPU time! (starving non-DL tasks)
= e.g.,a 5sec every |0sec task that can reclaim...

= 5o, in reality accounting will probably become
runtime -= Uact/Umax * delta exec

©ARM 2017 ARM

17

Bandwidth Reclaiming (cont.)

= e.g.,a 5sec every |0sec task that can’t reclaim...

- N, - N,
‘l ::--r.h »c,} i«p ,\i 'l :--:‘/« . A
. >

= VS, a 5sec every |0sec task that can reclaim (without Umax cap)

U, = 0.5 => runtime -= delta*0.5 -> deplete in (1/0.5)*runtime = 1l0sec

ac

U_.= 0.9 => runtime -= delta*(0.5/0.9) -> deplete in (0.9/0.5)*runtime = 9sec

max

leaving |sec for otherwise sad guys :-)

©ARM 2017

ARM

Bandwidth Reclaiming (cont.)

= Multiprocessor support
= ISSUE (one of a few)

Uact, + = Q Olag

Lj—ZI
l ,

CPU . >

= task i wakes up and is accounted for
= it then blocks and timer is set to fire at 0 lag time

18 ©ARM20I17 ARM

Bandwidth Reclaiming (cont.)

Multiprocessor support
ISSUE (one of a few)

CPU T

k

Olag

K

- i

task i wakes up again, before 0 lag
but it is migrated on a different CPU

= 0 lag timer cancelled, but no changes to both CPUs’ Uact

©ARM 2017

ARM

Bandwidth Reclaiming (cont.)

Multiprocessor support
ISSUE (one of a few)

I Uact, (t —1) ==Uact, (t)
CPU, >
Uact, — = % <0

CPU . - =

J

task i blocks again (on CPUj)
no change on CPUk’s Uact and CPUj’s Uact becomes negative!

©ARM 2017 ARM

Bandwidth Reclaiming (cont.)

Multiprocessor support
SOLUTION — migrate task’s utilization together with him

Uact, — = & Olag

v] X

Q

Uactj+:—

CPU . - >

]

<___—

0 lag timer cancelled, and...

utilization is instantaneously migrated as well

so that when task i blocks again everything is fine

©ARM 2017 ARM

Bandwidth Reclaiming (results)

|
1 H ! ! ! ! | I {E.\}-'
: |
« Taskl (6ms, 20ms) 5 ¢ Wi
. . : .' W
constant execution time i o
| I i
of Sms 08 I '
u ¢ ©
= Task2 (45ms, 260ms) i o ;'
experiences occasional 06 & : :
: W | * ,
variances (35ms-52ms) g i 5 .
: ! |
0.4 | i I -
: ® l
: f I
L |
| O l
A | _
- # ? Task 1, C IS -]
: @ Task 2. s O
' : Task 1, GR@E B
; ! k 2,
o . ‘ | | | Task 2 GI‘FE |E 9
0 50 100 150 200 2501 300
Response time (ms) T2'’s reservation period

22 ©ARM2017 ARM

Bandwidth Reclaiming (results)

1 T 7 | T | I : 5]
« Taskl (6ms, 20ms) 4 . i
constant execution time i o
of 5ms PR :") |
u ' ©
= Task2 (45ms, 260ms) § L '
experiences occasional 0% |- 2 : !
variances (35ms-52ms) m ; :
i |
0.4 —i Q : 7]
= Cumulative Distribution i i !
: i '
Function (CDF) ﬂ & |
ofe 0.2 ® 4
probability that Response | : rask1,cHS [
time will be less or equal to || Tgsff,zéggg °
< M . i P | | Task 2, GRUB ®
o 50 100 1EL 200 250 1 300
S Response time (ms) T2’s reservation periodARr‘|

Bandwidth Reclaiming (results)

|
1 H ! ! ! ! ! I {E.\}-'
| I
= Taskl (6ms, 20ms) 4 ¢ ¥
constant execution time ' o
i —>t i
of Sms : y
= Task2 (45ms, 260ms) /
experiences occasional : -
variances (35ms-52ms) | ;5 :
i |
0.4 — | -
| ® '
3 h :
= Plain CBS 5 O !
’ . . 02 ﬂ ® : i
T2’s response time bigger ; 4 rask1,cHS [
. . ' Task2,CBS
then reservation period i . Task 1, Gags u
o o 'i ‘r | | | | Task 2, GI‘FE |E 9
(~254) o 50 100 150 200 2501 300
Response time (ms) T2'’s reservation period

©ARM 2017 ARM

Bandwidth Reclaiming (results)

1M | e | | | T : 5]
« Taskl (6ms, 20ms) f]/7" i
constant execution time ; 1@
_ .' 1 i
of Sms i :‘ I
n 3 O
= Task2 (45ms, 260ms) ; o H
experiences occasiona 06 & : 1
variances (35ms-52m o | ’ '
0.4 —I | .
| ® '
i |
i '
- GRUB LD |
0.2 ﬂ é | .
T2 always completes before |+ ¢ Taskr,caS 0
reservation period (using Task 1 ggﬁg -
bandwidth left by TI) o —o— 100 - 200 - 200
Response time (ms) T2'’s reservation period

©ARM 2017 ARM

CHAPTER 3
Rock around the Clock (...and CPU)

ARM

Agenda

Deadline scheduling (SCHED _DEADLINE)
Why is development now happening (out of the blue?)

Bandwidth reclaiming

Frequency/CPU scaling of reservation parameters

Coupling with frequency selection

Group scheduling
Future

©ARM 2017 ARM

Frequency/CPU scaling

= Reservation runtime needs scaling according to frequency and CPU max

capacity
« for frequency, use the ratio between max and current capacity to enlarge the

runtime granted to a task at admission control

max _ capacity
curr _capacity

scaled _runtime =original _ runtime-

= similarly for CPU, but using the ratio between biggest and current CPU capacity

ARM

28 ©ARM2017

29

Frequency scaling (example)

» HiKey board has 5 Operating Performance Points (OPPs)

Frequency (MHz)

208 178 |7
432 369 36
729 622 61
960 819 80
1200 1024 100

= Running a task inside a 12ms/100ms reservation at min frequency means
extending its runtime up to

scaled runtime=12ms- % ~ 69ms
— 178

©ARM 2017

ARM

Frequency scaling (example cont.)

= |Oms/100ms task inside a 12ms/100ms reservation (at max freq)

|Oms

_ — — — -

|00ms

= |Oms/100ms task inside a 12ms/100ms reservation (at min freq)

~60ms

|00ms

= 20ms/100ms (bad guy!) task inside a |2ms/100ms reservation (at min freq)

~69ms throttled (~3 I ms)

|00ms

30 ©ARM20I17 ARM

Agenda

Deadline scheduling (SCHED _DEADLINE)
Why is development now happening (out of the blue?)

Bandwidth reclaiming

Frequency/CPU scaling of reservation parameters

Coupling with frequency selection

Group scheduling
Future

©ARM 2017 ARM

Driving frequency selection

= scaling clock frequency, while meeting tasks’ requirements (deadlines)
= scheduler driven CPU clock frequency selection

= schedutil cpufreq governor
SCHED_NORMAL —uses util avg (PELT)

SCHED_FIFO/RR and SCHED_ _DEADLINE — go to max!

= once bandwidth reclaiming is in*
= use rg->dl.running bwas SCHED DEADLINE per-CPU utilization contribution (sum)
= move CPU frequency selection triggering points (where running bw changes)

= allow sugov kworker thread(s) to always preempt SCHED DEADLINE tasks (and lower
priority) — for ! fast switch enabled drivers

32 EkMlig frordino (Evidence Srl) is helping with this. ARM

Driving frequency selection

= scaling clock frequency, while meeting tasks’ requirements (deadlines)
= scheduler driven CPU clock frequency selection

= schedutil cpufreq governor
SCHED_NORMAL —uses util avg (PELT)

SCHED_FIFO/RR and SCHED_ _DEADLINE — go to max!

= once bandwidth reclaiming is in*
= use rg->dl.running bwas SCHED DEADLINE per-CPU utilization contribu
= move CPU frequency selection triggering points (where running bw changes) \oE ‘i

= allow sugov kworker thread(s) to always preempt SCHED DEADLINE tasks (and lower
priority) —for ! fast switch enabled drivers

33 &AM Prordino (Evidence Sr) is helping with this. ARM

Driving frequency selection (example)

= 50ms/100ms inside 52ms/100ms + 10ms/100ms inside |2ms/100ms
= rt-app' based measure of “performance”

config. runtime config. slack T

config. period

measured _ slack = perf_index close to 1.0 means almost optimal

config _ slack performance
= negative perf_index means deadline misses

perf _index =

| - https://github.com/scheduler-tools/rt-app

34 ©ARM20I17 ARM

35

Driving frequency selection (example)

= 50ms/100ms inside 52ms/100ms + 10ms/100ms inside 12ms/100ms

Performance plots for task [task_p50]

Performance plots for task [task_pl0]

Task [task_pl0] (start) Latency and [completion) Slack

Perfindex
T

ﬂ L___—F-..—H—A—-—
_'1r'1r'ﬂ.lu

L | L

5

—I—I_L”
1 2 3 4

b

Task [task_p50] istart) Latency and [complation|) Slack

0
[
[
]
"
"
]
i
[
]
0
]
[
[
0
"
0
]
]
"
]
II | I
L
2 0F 04 05 06 07 98 0% 10

1
%‘ 05 06 ©F 08 0% 10

= deadlines are not missed while frequency is not at max (960MHz mostly)

complete set of results available at https:/gist.github.com/jlelli/22 | 96e46e4ffl fcdb022a994426 1 d90d2

©ARM 2017

ARM

https://gist.github.com/jlelli/22196e46e4ff1fcdb02a9944261d90d2

CHAPTER 4
Groupies

ARM

Agenda

Deadline scheduling (SCHED _DEADLINE)
Why is development now happening (out of the blue?)

Bandwidth reclaiming

Frequency/CPU scaling of reservation parameters

Coupling with frequency selection

Group scheduling
Future

©ARM 2017 ARM

Group scheduling

= Currently, one to one association between tasks and reservations

= Sometime it might be better/easier to group a set of tasks into the same
reservation
= virtual machine threads
= rendering pipeline
= legacy application (that for example needs forking)
= high priority driver kthread(s)
= Hierarchical/Group scheduling'-%3
= cgroups support
= temporal isolation between groups (and single entities)

| - A Framework for Hierarchical Scheduling on Multiprocessors - Giuseppe Lipari, Enrico Bini (https://goo.gl/veKr]y)

2 - Hierarchical Multiprocessor CPU Reservations for the Linux Kernel - F. Checconi, T. Cucinotta, D. Faggioli, G. Lipari (https://goo.gl/Pl|aQe¢)
3 - The IRMOS real-time scheduler - T. Cucinotta, F. Checconi (https://lwn.net/Articles/398470/)

38 ©ARM2017 ARM

https://goo.gl/veKrJy
https://goo.gl/PIJaQe
https://lwn.net/Articles/398470/

Group scheduling

= Hierarchical means
= first level is EDF
= second level is RT (FIFO/RR)

= Should eventually supplant
RT-throttling

39 ©ARM2017 ARM

Group scheduling

= Hierarchical means
= first level is EDF
= second level is RT (FIFO/RR)

= Should eventually supplant

RT-throttling 3

40 ©ARM20I7 ARM

41

Group scheduling

= On multiprocessors

— e e o o o o o D Em
— o - o o o o o = == ==
—— o o o o o = o o o = P

—————————

= One DEADLINE group entity per CPU
= Coexists with single DEADLINE entities

©ARM 2017

—— o o o o o = o o o = P

— o - o o o o o = == ==

ARM

Group scheduling

= On multiprocessors

e o o s o e s o o s = P
e o e s o e s o o s = P
e o o s o e s o o s = P

= One DEADLINE group entity per CPU
= Coexists with single DEADLINE entities
= Sub RT entities get migrated according to G-FP (push/pull)

42 ©ARM20I17 ARM

CHAPTER 5
It IS bright!

ARM

Agenda

Deadline scheduling (SCHED _DEADLINE)
Why is development now happening (out of the blue?)

Bandwidth reclaiming

Frequency/CPU scaling of reservation parameters

Coupling with frequency selection

Group scheduling
Future

©ARM 2017 ARM

Future

= NEAR

= experimenting with Android

= reclaiming by demotion towards lower priority class

= capacity awareness (for heterogeneous systems)

= energy awareness (Energy Aware Scheduling for DEADLINE)

- NEAR(...ISH)

= support single CPU affinity
= enhanced priority inheritance (M-BWI most probably)
= dynamic feedback mechanism (adapt reservation parameters to task’ needs)

45 ©ARM20I17 ARM

Get involved!

Shoot me an email <juri.lelli@arm.com>
Ask questions on LKML, linux-rt-users or eas-dev
Come join us @ OSPM-summit (https://goo.gl/ngTcgB)

ARM ... maybe remotely :-)

And don’t forget to collect your prizes!!!

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be
trademarks of their respective owners.

Copyright © 2017 ARM Limited

©ARM 2017

