
Disaster Recovery and Ceph Block Storage
Introducing Multi-Site Mirroring

Jason Dillaman
RBD Project Technical Lead

Vault 2017



WHAT IS CEPH ALL ABOUT

2

▪ Distributed storage
▪ All components scale horizontally
▪ No single point of failure
▪ Software
▪ Hardware agnostic, commodity hardware
▪ Object, block, and file in a single cluster
▪ Self-manage whenever possible
▪ Open source (LGPL)



RGW
A web services gateway for 

object storage, compatible with 
S3 and Swift

LIBRADOS
A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
A reliable, fully-distributed block 

device with cloud platform 
integration

CEPHFS
A distributed file system with 

POSIX semantics and scale-out 
metadata management

OBJECT BLOCK FILE

CEPH COMPONENTS

3



▪ Block device abstraction
▪ Striped over fixed-size objects
▪ Highlights

▪ Broad integration
▪ Thinly provisioned
▪ Copy-on-write clones
▪ Snapshots

RADOS BLOCK DEVICE

4



LIBRADOS

LIBRBD

M M

M
RADOS CLUSTER

RADOS BLOCK DEVICE

5

KRBD

User-space 
Client

Linux Host

LIBCEPH

IMAGE UPDATES



MOTIVATION

6

▪ Massively scalable and fault tolerant design
▪ What about data center failures?

▪ Data is the “special sauce”
▪ Failure to plan is planning to fail

▪ Snapshot-based incremental backups
▪ Desire online, continuous backups

▪ a la RBD Mirroring



▪ Replication needs to be asynchronous
▪ IO shouldn’t be blocked due to slow WAN
▪ Support transient connectivity issues

▪ Replication needs to be crash consistent
▪ Respect write barriers

▪ Easy management
▪ Expect failure can happen anytime

MIRRORING DESIGN PRINCIPLES

7



▪ Journal-based approach to log all modifications
▪ Support access by multiple clients
▪ Client-side operation
▪ Event logs appended into journal objects
▪ Delay all image modifications until event safe
▪ Commit journal events once image modification safe
▪ Provides an ordered view of all updates to an image

MIRRORING DESIGN FOUNDATION

8



▪ Typical IO path with journaling:
a. Create an event to describe the update
b. Asynchronously append event to journal object
c. Update in-memory image cache
d. Blocks cache writeback for affected extent
e. Completes IO to client

▪ Unblock writeback once event is safe

JOURNAL DESIGN

9



JOURNAL DESIGN

10

LIBRADOS

LIBRBD

M M

M
RADOS CLUSTER

User-space Client

WRITES READS

JOURNAL EVENTS
IMAGE UPDATES



▪ Mirroring peers are configured per-pool
▪ Enabling mirroring is a per-image property
▪ Requires that the journal image feature is enabled
▪ Image is primary (R/W) or non-primary (R/O)
▪ Replication is handled by rbd-mirror daemon

MIRRORING OVERVIEW

11



RBD-MIRROR DAEMON

▪ Requires access to remote and local clusters
▪ Responsible for image (re)sync 
▪ Replays journal to achieve consistency

▪ Pulls journal event from remote cluster
▪ Applies event to local cluster
▪ Commits journal event
▪ Trim journal

▪ Transparently handles failover/failback
▪ Two-way replication between two sites
▪ One-way replication between N sites

12



RBD-MIRROR DAEMON

13

SITE B

RBD-MIRROR
LIBRBD

M

CLUSTER A

MM M

CLUSTER B

MM

SITE A

RBD-MIRROR
LIBRBD

JOURNAL
EVENTS

IMAGE 
UPDATES

IMAGE 
UPDATES



MIRRORING SETUP

14

▪ Deploy rbd-mirror daemon on each cluster
▪ Jewel/Kraken only support single active daemon per-cluster

▪ Provide uniquely named “ceph.conf” for each remote cluster
▪ Create pools with same name on each cluster
▪ Enable pool mirroring (rbd mirror pool enable)
▪ Specify peer cluster via rbd CLI (rbd mirror pool peer add)
▪ Enable image journaling feature (rbd feature enable journaling)
▪ Enable image mirroring (rbd mirror image enable)



▪ Per-image failover / failback
▪ Coordinated demotion / promotion

▪ (rbd mirror image demote)
▪ (rbd mirror image promote)

▪ Uncoordinated promotion + resync
▪ (rbd mirror image promote --force)

▪ Resync from force-promotion / split-brain
▪ (rbd mirror image resync)

SITE FAILOVER

15



▪ Write IOs have worst-case 2x performance hit
▪ Journal event append
▪ Image object write

▪ In-memory cache can mask hit if working set fits
▪ Only supported by librbd-based clients

CAVEATS

16



▪ Use a small SSD/NVMe-backed pool for journals
▪ ‘rbd journal pool = <fast pool name>’

▪ Batch multiple events into a single journal append
▪ ‘rbd journal object flush age = <seconds>’

▪ Increase journal data width to match queue depth
▪ ‘rbd journal splay width = <number of objects>’

▪ Potentially parallelize journal append + image write between 
write barriers

MITIGATION

17



▪ Active/Active rbd-mirror daemons
▪ Deferred replication and deletion
▪ “Deep Scrub” of replicated images
▪ Smarter image resynchronization
▪ Improved health status reporting
▪ Improved pool promotion process

FUTURE FEATURES

18



▪ Incorporate “failure by design”
▪ Ceph now provides the tools for full-scale disaster recovery
▪ Workloads can seamlessly relocate between geographic sites

BE PREPARED

19



Questions?

20



THANK YOU!
Jason Dillaman
RBD Project Tech Lead

dillaman@redhat.com

21


