The Evolution of Open vSwitch
LinuxCon 2014

Jesse Gross
August 21, 2014
A Very Brief Introduction to OVS

A programmable switch!
- Optimized around large scale automation and control
- Efficiently handle large amounts of state
- Distribute state around the network
Where We Started (in ~2009)

- Truly began life (in 2007) as an academic project
- Original uses were for enforcing policy and security
- Later turned into what is now OpenFlow
- Reborn as an open source project in 2009
Where We Are Today

• Used in most SDN/network virtualization systems
• Reference implementation for OpenFlow
• Large feature set beyond OpenFlow
• Integrated with Linux, libvirt, cloud management tools
• Ported onto several switching ASICs
• Incorporated into many vendors’ products (code is Apache licensed)

Used by the majority of OpenStack deployments as the network switch
In Between

Code, Comments and Blank Lines

Zoom | 1yr | 3yr | 5yr | All

300k

200k

100k

2010 2011 2012 2013 2014
Open vSwitch Architecture

- Control Cluster
- ovsdb-server
- ovs-vswitchd
- OVS Kernel Module

Protocols:
- Management Protocol (6632/TCP)
- OpenFlow (6633/TCP)
- Netlink
Challenges

“No plan survives contact with the enemy.”
Issues in Production Deployments

• Performance
• Performance
• Performance
Why?

Not actually that surprising:

- Open vSwitch design goal is flexibility and programmability
 ➔ Usually this isn’t free
- Common use cases usually involve large amounts of state
- Software sometimes has a bad name in networking performance
 ➔ If you are using virtualization, you are probably already using a software switch.
What Does ‘Performance’ Mean?

Many ways to measure network performance:
• Bandwidth (bytes per second)
• Small packets (packets per second)
• Flow setup rate
• Latency
• CPU usage
Throughput

Common configuration: 10G NIC, bulk traffic

9.88 Gbps
(i.e. full rate after packet headers)

Dual socket Sandy Bridge class CPUs, Spirent traffic generator
New Connections

Netperf TCP_CRR Test

Connections/second

Linux Bridge

OVS
Megaflows

OVS maintains a set of flow entries in the kernel for established traffic

Good:
- Hits provide good performance even for complex rules

Bad:
- Missing the entry

Idea: Dynamically change the definition of a flow based on rules.

L2 learning switch:
Before: Input port, Ethernet src/dst, IP src/dst, TCP src/dst, …
After: Input port, Ethernet src/dst
Megaflows: Results

Megaflows largely either work or they don’t:
 – If wildcards match, performance is the same as established flows.
 – If no match, performance is the same as without megaflows.

Wildcard set (and performance) depends on OVS configuration.
Small Packets

The graph shows the throughput (in Gbps) as a function of packet size (in bytes) for both 1 Flow and 128 Flows. The throughput generally increases with packet size, but there are differences in performance between single and multiple flows.
Dataplane Development Kit (DPDK)

What is DPDK?

• A packet processing environment in userspace
• Application specific, so no general purpose overhead
• Set of libraries to take advantage of modern processor features
• Run-to-completion model, takes over one or more cores fully

OVS kernel code is fairly small and can be ported to DPDK as if it was a different operating system.

DPDK is almost like a hardware offload – but on x86 cores.
DPDK: Results

![Graph showing throughput vs. packet size](image-url)
Hardware Offload

Large variety of hardware offloads seen over the years

Some successful:
- Checksum offload
- Scatter/gather
- TCP segmentation offload (TSO)
- Receive hashing/spreading

Some not:
- TCP offload engine (TOE)
- NIC passthrough (SR-IOV)

Level of software control is the difference between the categories.
Offloading OVS

Some general offloads are particularly useful in OVS environments:

- Stateless offloads for tunnels
- Quality of service (QoS)
- Encryption

OVS flow table offload?

- Partial offload: NIC indicates likely match, software verifies and processes
- Full offload: Table lives in NIC

Still under discussion, no performance results yet.
Questions
(and maybe answers)