Groking the Linux SPI Subsystem

Embedded Linux Conference 2017

Matt Porter
Konsulko

roup

Obligatory geek
reference
deobfuscation

grok (/grdk/)
verb

to understand intuitively or by empathy, to
establish rapport with.

Overview

What is SPI?
SP| Fundamentals
Linux SPI Concepts

Linux SPI Use cases

o Add a device

o Protocol drivers

o Controller drivers
o Userspace drivers

Linux SPI Performance
Linux SPI Future

What is SPI?

What is SPI?

Serial Peripheral Interface
Motorola

de facto standard
master-slave bus

4 wire bus

o except when it's not

e Nno maximum clock speed
e “A glorified shift register”

http://wikipedia.org/wiki/Serial_Peripheral_Interface

http://wikipedia.org/wiki/Serial_Peripheral_Interface
http://wikipedia.org/wiki/Serial_Peripheral_Interface

Common uses of SPI

e Flash memory
ADCs
e Sensors
o thermocouples, other high data rate devices
e LCD controllers
e Chromium Embedded Controller

SPI| fundamentals

SPI Signals

e MOSI - Master Output Slave Input
o SIMO, SDI, DI, SDA

e MISO - Master Input Slave Output
o SOMI, SDO, DO, SDA

e SCLK - Serial Clock (Master output)
o SCK, CLK, SCL

e SS - Slave Select (Master output)

e CSn, EN, ENB

SPI| Master and Slave

SCLK

MOSI

MISO
SS#

Basic SPI Timing Diagram

Write Mode 0

Read Mode 0

SPI 8-bit transfers

SCLK + A A A A A A A A A A

MOSI /X D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7 X/

MISO

ss [

scLk 4 | 4

MOSI

MISO /X D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7 ¥/
s\ [

SP| Modes

e Modes are composed of two clock characteristics
e CPOL - clock polarity

o 0 = clock idle state low

o 1 = clock idle state high
e CPHA - clock phase

o (0 = data latched falling, output rising

o 1 = data latched rising, output falling

Mode CPOL

0 0

1

0
2 1
3 1

SP| Mode Timing - CPOL 0

SPI Write Mode 0

SCLK
MOS| /X D0 X D1 X D2 X\ D3 X D4 X\ D5 X D6) D7 ¥/
ss [

Clock idle low, data latched on rising edge

SPI Write Mode 1

SCLK
MOSI /X D0 X D1 X D2 X D3 X D4 X D5 X D6)\ D7 ¥/
ss [

Clock idle low, data latched on falling edge

SPI| Mode Timing - CPOL 1

SPI Write Mode 2

SCLK
MOSI 7/ D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7 X/
ss\ [/

Clock idle high, data latched on falling edge

SPI| Write Mode 3

SCLK
MOSI 7/ Do \ D1 X D2 \ D3 X D4 X D5 X D6 X D7 ¥/
ss 1\ [

Clock idle high, data latched on rising edge

SPI| can be more complicated

e Multiple SPI Slaves
o One chip select for each slave
e Daisy Chaining
o Inputs to Outputs
o Chip Selects
e Dual or Quad SPI (or more lanes)
o Implemented in high speed SPI Flash devices
o Instead of one MISO, have N MISOs
o N times bandwidth of traditional SPI
e 3 Wire (Microwire) SPI
o Combined MISO/MQOSI signal operates in half duplex

Multiple SPI Slaves

SS1#

SCLK
MOSI

MISO

SS2#

SS3#

Write Mode 0

SPIl Mode Timing - Multiple Slaves

SP| transfers with three slaves

so LA L LA L L L L L L L U L L L L L L U L L L L L
MOSI 7% Do ¥ D1 ¥ D2 Y\ D3 (D4 D5 D6 ¥ D7 ¥/7/¥ Do ¥ D1 Y b2 (D3 (D4 ¥ D5) D6 D7 ¥/ bo) D1) D2} D3y Da)D5)D6YD7YN

MISO

sst .\ /
ss2 \ /

Linux SPI concepts

Linux SPI drivers

e Controller and Protocol drivers only (so far)
o Controller drivers support the SPI master controller
m Drive hardware to control clock and chip selects, shift data bits on/off
wire and configure basic SPI characteristics like clock frequency and
mode.
m e.g. spi-bcm2835aux.c
o Protocol drivers support the SPI slave specific functionality
m Based on messages and transfers
m Relies on controller driver to program SPI| master hardware.
m e.g. MCP3008 ADC

Linux SPI communication

e Communication is broken up into transfers and messages
e Transfers
o Defines a single operation between master and slave.
o tx/rx buffer pointers
o optional chip select behavior after operation
o optional delay after operation
e Messages
o Atomic sequence of transfers
o Fundamental argument to all SPI subsystem read/write APls.

SPI| Messages and Transfers

Linux SP| use cases

Exploring via use cases

e | want to hook up a SPI device on my board that already
has a protocol driver in the kernel.
e | want to write a kernel protocol driver to control my SPI

slave.
e | want to write a kernel controller driver to drive my SPI

master.
e | want to write a userspace protocol driver to control my
SPI slave.

Adding a SPI device to a system

e Know the characteristics of your slave device!
o Learn to read datasheets
e Three methods
o Device Tree
m Ubiquitous
o Board File
m Deprecated
o ACPI
m Mostly x86

Reading datasheets for SPI| details - ST7735

The ST7735 is a single-chip controller/driver for 262K-color, graphic type TFT-LCD. It consists of 396 source line and 162
gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial
Peripheral Interface (SPI), 8-bit/9-bit/16-bit/18-bit parallel interface. Display data can be stored in the on-chip display data
RAM of 132 x 162 x 18 hits. It can perform display data RAM read/write operation with no external operation clock to

8.2 Serial interface characteristics (3-line serial)

csx ™ s
Vil N - Terw

B Tscvew/Tscver ol TG
Tess -« _ ¥
| TeudT i i Tscc
SCL Z K suw [sLr Z S
- Tanl Tsur | g 7 Vi
DR
i Tsps Tson |
V) = .
soa [X :E
- i~ ! Tace s Toi: Vin
i H H Vi
SDA e Voo)

(DOUT) : Vi 4

Fig. 8.2.1 3-line serial interface timing

Signal Symbol Parameter Min Max Unit Description
TCSS Chip select setup time (write) | 15 ns
TCSH Chip select hold time (write) 15 ns
CSX TCSS Chip select setup time (read) | 60 ns
TSCC Chip select hold time (read) 65 ns
TCHW Chip select “H” pulse width 40 ns

Reading datasheets for SPI details - ST7735

TSCYCW | Serial clock cycle (Write) 66 ns
TSHW SCL “H”" pulse width (Write) 30 ns
sl TSLW SCL “L" pulse width (Write) 30 ns
TSCYCR | Serial clock cycle (Read) 150 ns
TSHR SCL “H” pulse width (Read) 60 ns
TSLR SCL “L" pulse width (Read) 60 ns
97 e %, e
csX _\
Host
RN IO 0000000 000000E

SCL|||

Tyl

Command

-5\ I\

SEN)

gyl

Command/Parameter

Reading datasheets for SPI details - MCP3008

* On-chip sample and hold single-ended inputs. Differential Nonlinearity (DNL)
+ SPI serial interface (modes 0,0 and 1,1) and Integral Nonlinearity (INL) are specified at +1 LSB.
+ Single supply operation: 2.7V - 5.5V Communication with the devices is accomplished using

a simple serial interface compatible with the SPI

* 200 Kspe e Sanphig Tte ot Vg, = BV protocol. The devices are capable of conversion rates

* 75 ksps max. sampling rate at Vpp = 2.7V of up to 200 ksps. The MCP3004/3008 devices operate
TesH
cs y —
Tsucs !
. » Tw Two
7
ax A N\ AW
Tsu ThHD
Din MSB IN ’D ”D(
/ -
Tpo Tr Te Tois
Dout 1/ i NULL BIT { MSB ouT I { Eq LSB p—
FIGURE 1-1: Serial Interface Timing.
Clock High Time th 125 — — ns
Clock Low Time to 125 — — ns
CS Fall To First Rising CLK Edge | tgycs 100 _ —_ ns
CS Fall To Falling CLK Edge tesp — = 0 ns

Reading datasheets for SPI details - MCP3008

teve ~ fevc

D [l[sar] [D2]D1[DO EXIEE
SGL/ SGL/
DIFF DIFF
L EC R0 e
.
"l
tsampLE ol toata ™

* After completing the data transfer, if further clocks are applied with CS low, the A/D converter will output LSB
first data, then followed with zeros indefinitely. See Figure 5-2 below.

** toaTa: during this time, the bias current and the comparator powers down while the reference input becomes
a high-impedance node.

FIGURE 5-1: Communication with the MCP3004 or MCP3008.

MCP3008 via DT - binding

* Microchip Analog to Digital Converter (ADC)

The node for this driver must be a child node of a SPI controller, hence
all mandatory properties described in

Documentation/devicetree/bindings/spi/spi-bus.txt
must be specified.

Required properties:
- compatible: Must be one of the following, depending on the
model:

"microchip,mcp3008"

Examples:
spi_controller {
mcp3x0x@0 {
compatible = "mcp3002";
reg = <0>;
spi-max-frequency = <1000000>;

MCP3008 via DT - driver

static const struct of_device_id mcp320x_dt_ids[] = {
/* NOTE: The use of compatibles with no vendor prefix is deprecated. */

{
o Ao
.compatible = "mcp3008",
.data = &mcp320x_chip_infos[mcp3008],
oA
¥

},
MODULE_DEVICE_TABLE(of, mcp320x_dt_ids);

static struct spi_driver mcp320x_driver = {
.driver = {
.name = "mcp320x",
.of_match_table = of_match_ptr(mcp320x_dt_ids),
},
.probe = mcp320x_probe,
.remove = mcp320x_remove,
.id_table = mcp320x_id,
}
module_spi_driver(mcp320x_driver);

MCP3008 via DT - DTS overlay fragment

fragment@1 {
target = <&spil>;
__overlay _ {
/* needed to avoid dtc warning */
#address-cells = <1>;
#size-cells = <0>;
mcp3x0x@0 {
compatible = "mcp3008";
reg = <0>;
spi-max-frequency = <1000000>;

MCP3008 via board file - C fragment

static struct spi_board_info my_board_info[] _ _initdata = {

{
.modalias = "mcp320x",
.max_speed_hz = 4000000,
.bus_num =0,
.chip_select =0,

Y,

}i

spi_register_board_info(spi_board_info, ARRAY_SIZE(my_board_info));

MCP3008 via ACPI

Scope (_SB.SPI1)

{
Device (MCP3008)
{
Name (_HID, "PRP00OO1")
Method (_CRS, 0, Serialized) {
Name (UBUF, ResourceTemplate () {
SpiSerialBus (0x0000, PolaritylLow, FourWireMode, 0x08,
ControllerInitiated, 0x003D0900, ClockPolaritylow,
ClockPhaseFirst, "_SB.SPI1", 0x00, ResourceConsumer)
})
Return (UBUF)
}
Method (_STA, 0, NotSerialized)
{
Return (OxF)
b
}

Protocol Driver

e Standard LInux driver model
e |nstantiate a struct spi_driver
o .driver =
m .name = “my_protocol’,
m .pm = &my_protocol pm_ops,
o .probe = my_protocol probe
o .remove = my_protocol remove
e Once it probes, SPI I/O may take place using kernel APls

Kernel APIs

e spi_async()
o asynchronous message request
o callback executed upon message complete
o can be issued in any context
e spi_sync()
o synchronous message request
o may only be issued in a context that can sleep (i.e. not in IRQ context)
o wrapper around spi_async()
e spi_write()/spi_read()
o helper functions wrapping spi_sync()

Kernel APIs

e spi_read flash()
o Optimized call for SPI flash commands
o Supports controllers that translate MMIO accesses into standard SPI

flash commands
e spi_message init()
o Initialize empty message
e spi_message add _tail()
o Add transfers to the message’s transfer list

Controller Driver

e Standard LInux driver model
e Allocate a controller
o spi_alloc_master()
e Set controller fields and methods (just the basics)
o mode_bits - flags e.g. SPI_CPOL, SPI_CPHA, SPI_NO_CS,
SPI_CS HIGH, SPI_RX QUAD, SPI_LOOP
o setup() - configure SPI parameters
o cleanup() - prepare for driver removal
o transfer_one message()/transfer_one() - dispatch one msg/transfer
(mutually exclusive)
e Register a controller
o spi_register _master()

Userspace Driver - spidev

e Primarily for development and test
e DT binding requires use of a supported compatible string or add a new one if
no kernel driver exists for the device
o rohm,dh2228fv
o lineartechnology,|tc2488

o ge,achc

e ACPI binding requires use of a dummy device ID
o SPT0001
o SPT0002

o SPTO0003

Userspace Driver - spidev

e Slave devices bound to the spidev driver yield:
o /sys/class/spidev/spidev[bus].[cs]
o /dev/spidev[bus].[cs]
e Character device
o open()/close()
o read()/write() are half duplex

o ioctl()
m SPI I0C_MESSAGE - raw messages, full duplex and chip select
control

m SPI I0C [RD|WR] _* - set SPI parameters

Userspace Help

e Docs
o Documentation/spi/spidev
e Examples
o tools/spi/spidev fdx.c
o tools/spi/spidev_test.c
e Helper libaries
o https://github.com/jackmitch/libsoc
o https://github.com/doceme/py-spidev

https://github.com/jackmitch/libsoc
https://github.com/jackmitch/libsoc
https://github.com/doceme/py-spidev
https://github.com/doceme/py-spidev

Performance considerations

e Be aware of underlying DMA engine or SPI controller driver behavior.
o e.g. OMAP McSPI hardcoded to PIO up to 160 byte transfer
e sync versus async API behavior
o async may be suitable for higher bandwidth where latency is not a
concern (some network drivers)
o sync will attempt to execute in caller context (as of 4.x kernel) avoiding
sleep and reducing latency

Performance considerations

e Use cs_change wisely. Note the details from include/linux/spi/spi.h:

All SPI transfers start with the relevant chipselect active. Normally
it stays selected until after the last transfer in a message. Drivers
can affect the chipselect signal using cs_change.

(1) If the transfer isn't the last one in the message, this flag is
used to make the chipselect briefly go inactive in the middle of the
message. Toggling chipselect in this way may be needed to terminate
a chip command, letting a single spi_message perform all of group of
chip transactions together.

(ii) When the transfer is the last one in the message, the chip may
stay selected until the next transfer. On multi-device SPI busses

with nothing blocking messages going to other devices, this is just

a performance hint; starting a message to another device deselects

this one. But in other cases, this can be used to ensure correctness.
Some devices need protocol transactions to be built from a series of
spi_message submissions, where the content of one message is determined
by the results of previous messages and where the whole transaction
ends when the chipselect goes inactive.

* ok ok ok ok ok ok ok F ok F F ok F ok ok F ok *

Performance tools

e Debug/visibility tools critical to any hardware focused work
e Logic analyzer
o http://elinux.org/Logic_Analyzers
o https://sigrok.org/wiki/Supported hardware#l ogic_analyzers
e drivers/spi/spi-loopback-test
e SPI subsystem statistics
o /[sys/class/spi_master/spiB/spiB.C/statistics
m messages, transfers, errors, timedout
m Spi_sync, spi_sync_immediate, spi_async
m transfer bytes histo *

http://elinux.org/Logic_Analyzers
http://elinux.org/Logic_Analyzers
https://sigrok.org/wiki/Supported_hardware#Logic_analyzers
https://sigrok.org/wiki/Supported_hardware#Logic_analyzers

Linux

Slave Support

e Hard real time issues on Linux due to full duplex nature of SPI.
e Useful if considering limited use cases
o Pre-existing responses
o Commands sent to slave
e RFC v2 patch series
o https://lkml.org/lkml/2016/9/12/1065
e Registering a controller works just like a master
o spi_alloc_slave()

https://lkml.org/lkml/2016/9/12/1065
https://lkml.org/lkml/2016/9/12/1065

Slave Support

e /sys/class/spi_slave/spiB/slave for each slave controller
e slave protocol drivers can be bound via sysfs
o echo slave-foo > /sys/class/spi_slave/spi3/slave
e Two slave protocol drivers provided as an example
o spi-slave-time (provides latest uptime to master)
o spi-slave-system-control (power off, reboot, halt system)

Questions?

