% High throughput kafka for science

Testing Kafka's limits for science

J Wyngaard, PhD wyngaard@jpl.nasa.gov

- Streaming Science Data
- Benchmark Context
- Tests and Results
- Conclusions

- Streaming Science Data
- Benchmark Context
- Tests and Results
- Conclusions

Streaming Science Data

SOODT, Kafka, Science data streams

DIA GROUP

 Using open source tools extensively, to enable JPL scientists to handle their big data.

- Apache OODT
- Apache Tika
- Apache Hadoop
- Apache Kafka
- Apache Mesos
- Apache Spark
- ...so many more...

SCIENCE DATA

- Earth Science
 - Satellite data ~5GB/day
- Radio Astronomy
 - Antenna arrays ~4Tbps >>1K 10Gbps
- Airborne missions
 - ~5GB files, 0.5TB per flight
- Bioinformatics

STREAMING SOODT

Streaming OODT Conceptual Layout

APACHE KAFKA

10G X 1024 - ?

- Low Frequency Apature array:
 - 0.25M antennas
 - 1024 stations
 - 16 Processing modules

= 4Tbps from 1024 stations at 10Gbps each

Artists' impression of LFAA, SKA image

https://www.skatelescope.org/multimedia/image/l ow-frequency-array-ska-wide-field/

- Streaming Science Data
- Benchmark Context
- Tests and Results
- Conclusions

Benchmark Context

Reality check – kafka was not designed for this

TACC WRANGLER

Primary system

- 96 nodes
 - 24Core Haswells
 - 128GB RAM
- Infniband FDR and 40 Gb/s Ethernet connectivity.
- 0.5PB NAND Flash
 - 1 Tbps
 - >200 million IOPS.
- A 24 node replicate cluster resides at University of Indiana, connected by a 100 Gb/s link

"LAZY" BENCHMARKING

- "Lazy" being:
 - Off-the shelf
 cheap hardware
 - Untuned default configuration

.inked in _® Engineering										
Home	Projects	Technology	Team	Blog	Tech Talks	Jobs				
Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap Machines)										
		Jay Kreps Principal Sta Engineer Posted on 04/27/2014	aff			53 in s	39 Share	242	1 90	
I wrote	a blog post ing data be	about how Link tween application	edIn use	s <mark>Apac</mark> h am proc	e Kafka as a c essing, and Ha	entral publi doop data	ish-sul ingest	bscribe log ion.) for	

https://engineering.linkedin.com/kafka/benchm arking-apache-kafka-2-million-writes-secondthree-cheap-machines

6 CHEAP MACHINES

- OTS benchmark
 - 6 core 2.5GHz Xeons
 - ~ 100 IOPS harddrives
 - 1Gb Ethernet

- Wrangler nodes
 - 2x 12core 2.5GHz Xeons
 - >200 IOPS flash

- 128GB RAM

- 40Gb Ethernet

"LAZY" CONFIGURATION

- Kafka trunk 0.8.1
- New producer
- Default configurations
- Small messages
- Setup
 - 3 Broker nodes
 - 3 Zookeeper, Consumer, Producer nodes
- Kafka builtin performance tools

STRAIGHTLINE "LAZY" SPEED TEST

- 1 Producer
- 0 Consumer
- 1 Topic
- 6 partition
- 1 replicates (i.e 0)
- 50M 100B messages (small for worst case)

Consumer Nodes

STRAIGHTLINE "LAZY" SPEED TEST

- 1 Producer
- 0 Consumer
- 1 Topic
- 6 partition
- 1 replicates (i.e 0)
- 50M 100B messages (small for worst case)

6 cheap machines 78.3MB/s* (0.6Gbps)

Wrangler 170.27 MB/sec* (1.3Gbps)

*Network overhead not accounted for

A MESSAGE SIZE

Record Size (Bytes)

OTHER PARAMETER IMPACTS

• Replication:

- Single producer thread, 3x replication, 1 partition
 - Asynchronous
 - 0.59Gbps
 - Synchronous
 - 0.31 Gbps
- Parallelism:
 - Three producers, 3x asynchronous replication
 - Independant machines
 - -1.51 MB/sec < 3*0.59 = 1.77

Reference straight line producer speed: 0.61Gbps

- Streaming Science Data
- Benchmark Setup
- Wrangler Performance
- Conclusions

Wrangler Performance Limits

TARGETTING 10G

- 40x networks speed
- 4x core counts
- 2x IOPS
- 128x RAM

- Starting point
 - Bigger messages
 - No replication
 - In node paralleism
 - Big Buffers
 - Large Batches

A MESSAGE SIZE

Averaged throughput over changing message size

PARTITIONS

3 producers, 1 topic, asynchronous, 3 consumer threads

- Averager 6.49Gbps (8000 messages)

PARTITIONS

6 producers, 1 topic, asynchronous, 6 consumer threads

- Averager 2.6Gbps (8000 messages)

PARTITIONS

• 6 producers, 1 topic, asynchronous, 6 consumer threads, and 6 brokers

- Averager 1.2Gbps (8000 messages)

- Context
- TACC Wrangler Data Analysis System
- Benchmark Setup
- Tests and Results
- Conclusions

And where to from here

TARGETTING 10G

- Apparent optimum for a single node producer on this hardware:
 - ~10MB messages
 - 3 Producers matching 3 consumers/consumer trheads
- More brokers, producers, consumers are detremental
- 6.49Gbps < 10Gbps

ALTERNATIVE AVENUES

- Parallelism -multiple topics if this is tollerable
 Potential ordering and chunking overheads)
- In a shared file systemagnvironment perhaps the file pointers rather than files should be moved
 (not suitable in many applications)
- Nothing to be gained in better hardware

HPC PRODUCTION CLUSTER ENVIRONMENT

• Pros

- Shared files system
- tmpfs
- Scale
- Cons:
 - User space installs only
 - SLURM
 - Idev
 - Job times-out loosing configurations, leaving a mess
 - Queuing for time
 - Loading cost and impremanance of data
 - Stability of Kafka / Other users interferring ?

HPC PRODUCTION CLUSTER ENVIRONMENT

- Lessons learned:
 - Develop in your destination environment
 - Flash Storage makes life easy
 - Caveat -it is wiped when your reservation runs outs.
 - Lustr...
- No battle scars credit to XSEDE wrangler management team and Kafak builders

REFERENCES

 Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap Machines)Benchmark https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines

ACKNOWLEDGEMENTS

NASA Jet Propulsion Laboratory

 Research & Technology Development: "Archiving, Processing and Dissemination for the Big Data Era"

• XSEDE

- This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575.
 "XSEDE: Accelerating Scientific Discovery"
 - John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson, Ralph Roskies, J. Ray Scott, Nancy Wilkins-Diehr, Computing in Science & Engineering, vol.16, no. 5, pp. 62-74, Sept.-Oct. 2014, doi:10.1109/MCSE.2014.80